
Computer Physics Communications 302 (2024) 109238

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Method for scalable and performant GPU-accelerated simulation of
multiphase compressible flow ✩

Anand Radhakrishnan a, Henry Le Berre a, Benjamin Wilfong a, Jean-Sebastien Spratt c,
Mauro Rodriguez Jr. d, Tim Colonius c, Spencer H. Bryngelson a,b,∗

a School of Computational Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
b Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
c Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
d School of Engineering, Brown University, Providence, RI 02912, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Computational fluid dynamics
Heterogeneous computing
Multiphase flows

Multiphase compressible flows are often characterized by a broad range of space and time scales, entailing large
grids and small time steps. Simulations of these flows on CPU-based clusters can thus take several wall-clock
days. Offloading the compute kernels to GPUs appears attractive but is memory-bound for many finite-volume
and -difference methods, damping speedups. Even when realized, GPU-based kernels lead to more intrusive
communication and I/O times owing to lower computation costs. We present a strategy for GPU acceleration
of multiphase compressible flow solvers that addresses these challenges and obtains large speedups at scale.
We use OpenACC for directive-based offloading of all compute kernels while maintaining low-level control
when needed. An established Fortran preprocessor and metaprogramming tool, Fypp, enables otherwise hidden
compile-time optimizations. This strategy exposes compile-time optimizations and high memory reuse while
retaining readable, maintainable, and compact code. Remote direct memory access realized via CUDA-aware
MPI and GPUDirect reduces halo-exchange communication time. We implement this approach in the open-source
solver MFC [1]. Metaprogramming results in an 8-times speedup of the most expensive kernels compared to a
statically compiled program, reaching 46% of peak FLOPs on modern NVIDIA GPUs and high arithmetic intensity
(about 10 FLOPs/byte). In representative simulations, a single NVIDIA A100 GPU is 7-times faster compared to
an Intel Xeon Cascade Lake (6248) CPU die, or about 300-times faster compared to a single such CPU core. At the
same time, near-ideal (97%) weak scaling is observed for at least 13824 GPUs on OLCF Summit. A strong scaling
efficiency of 84% is retained for an 8-times increase in GPU count. Collective I/O, implemented via MPI3, helps
ensure the negligible contribution of data transfers (< 1% of the wall time for a typical, large simulation). Large
many-GPU simulations of compressible (solid-)liquid-gas flows demonstrate the practical utility of this strategy.
1. Introduction1

Multiphase compressible flows are ubiquitous, with examples such
as the atomization of liquid droplets [2], bubble cavitation [3], and
shock-wave attenuation of nuclear blasts [4]. Collapsing bubble clouds
in cavitating flows can result in shock waves that lead to large pressures.
This has applications in a wide variety of engineering problems, such
as the design of mechanical heart valves [5], burst-wave lithotripsy [6],
and minimizing blast-induced trauma [7]. These high pressures also

✩ The review of this paper was arranged by Prof. Andrew Hazel.
* Corresponding author at: School of Computational Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

E-mail address: shb@gatech.edu (S.H. Bryngelson).

cause erosion of industrial equipment in flow around hydrofoils [8],
pumps [9], and propellers [10]. Simulation of multiphase phenomena
is thus critical to enable engineering design and minimize equipment
damage.

Courant–Friedrichs–Lewy (CFL) constraints for compressible flow
restrict permissible time step sizes. Thus, many time steps are needed to
simulate the relevant physical phenomena, making the minimization of
wall time for each time step critical. Since 2004, CPU clock speeds have
plateaued, ending Dennard scaling. Thus, the compute capabilities of
Available online 13 May 2024
0010-4655/© 2024 Elsevier B.V. All rights reserved.

1 All code available at https://github .com /MFlowCode /MFC.

https://doi.org/10.1016/j.cpc.2024.109238
Received 15 July 2023; Received in revised form 12 April 2024; Accepted 6 May 20
24

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:shb@gatech.edu
https://github.com/MFlowCode/MFC
https://doi.org/10.1016/j.cpc.2024.109238
https://doi.org/10.1016/j.cpc.2024.109238
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109238&domain=pdf

A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

modern supercomputers stem primarily from GPU accelerators. Lever-
aging GPUs is thus essential to extracting meaningful speedups from
state-of-the-art supercomputers.

Multiphase compressible flow algorithms consist mostly of level 1
BLAS (vector) stencil operations, so most are memory bound [11]. The
low arithmetic intensity of these kernels prevents efficient use of the
GPU’s compute capabilities. Faster GPU kernels can also lead to promi-
nent MPI communication and I/O transfer times. This can exacerbate
strong scaling behavior for smaller problem sizes with large numbers of
GPUs. We present strategies that address the concerns above to obtain
satisfactory performance on accelerators. The portability of our acceler-
ation strategies is ensured by conducting tests on various architectures.
Large multi-GPU simulations are included to emphasize the benefits of
our strategies in pertinent applications.

GPU speedups, scaling tests, and example simulations are conducted
with the open-source solver MFC [1]. Interface capturing methods [12],
particularly the 5- and 6- equation models [13–15], are used to rep-
resent the multi-component flow. These equations are discretized and
solved using a shock-capturing finite volume scheme that uses high-
order accurate WENO reconstructions [16,17]. The Riemann problem
is then solved using an HLLC approximate Riemann solver [18], and
the solution is evolved with a total-variation-diminishing (TVD) Runge–
Kutta time stepper [19]. The GPU acceleration strategies outlined in this
work take advantage of the increased arithmetic intensity of high-order
accurate methods typically used for multicomponent flow simulations.

Large-scale compressible flow simulations have been conducted on
CPUs for a long time and still gather substantial attention [20]. How-
ever, attempts at optimizing such solvers for GPU acceleration are less
unified as the GPU hardware landscape evolves. We cite solvers like
STREAmS (version 1 and 2) [21,22] and ZEFR [23] as just a couple
of demonstrative examples of these efforts. STREAmS simulates com-
pressible turbulent flow via a flux vector splitting method and achieves
250-times speedups on a single NVIDIA V100 GPU over an Intel Sky-
lake CPU core. They observe 97% weak scaling efficiency for up to
1024 V100 GPUs along with 90% strong scaling efficiency for an 8-times
increase in GPU count. ZEFR employs similar strategies and observes
similar accelerations, simulating single-phase compressible flows and
retaining 70% strong scaling efficiency for an 8-times increase in GPU
count. These solvers do not address the challenges associated with mul-
ticomponent flows, which is part of our focus.

The flexibility associated with the GPU programming model is a
concern of increasing importance. CUDA offers reliable performance
on NVIDIA GPUs and has been a GPU-programming mainstay since
its inception in 2007. However, other vendors like AMD and Intel are
deploying competitive GPU accelerators in the most capable new super-
computers, like OLCF Frontier, CSC LUMI, and ALCF Aurora [24–26].
Vendor-specific programming models like CUDA are insufficient to take
advantage of the capability these new supercomputers bring. Deploy-
ing performant and vendor-agnostic fluid flow solvers on new com-
puters requires adopting more flexible programming models. Here, we
use OpenACC [27], a performance-competitive directive-based model
with established support for NVIDIA GPUs [28] and increasing sup-
port for AMD and Intel hardware [29]. The FluTAS solver [30] also
adopted OpenACC, solving the incompressible multiphase flow prob-
lem via a finite difference scheme. However, speedups are limited in
the incompressible flow case due to communication times associated
with pressure-Poisson solves and Fourier transforms. In their study,
FluTAS displayed linear weak scaling and a 40% retention in strong
scaling efficiency for an 8-times increase in GPU count on the MeluXina
supercomputer [31]. URANOS [32] uses OpenACC similarly for tur-
bulent compressible flows, demonstrating the approach’s efficacy for
compressible CFD applications. However, the algorithms employed de-
grade performance by 20% when weak scaling up to 300 GPUs, and the
speedups are limited compared to the ones we present here.

We describe the computational models used to formulate the gov-
2

erning equations in section 2. The numerical method that solves the
Computer Physics Communications 302 (2024) 109238

discrete conservation laws is outlined in section 3. Section 4 describes
optimal GPU acceleration and MPI communication strategies. Results
for model validation, GPU speedups, and scaling tests are presented in
section 5. The benefits of GPU acceleration for large multiphase prob-
lems are illustrated via example simulations in section 6. Section 7
highlights the relevant conclusions from this work.

2. Computational model

We briefly describe the multicomponent models used in GPU ac-
celeration tests. These models are reduced from the non-equilibrium
Baer–Nunziato model [33].

2.1. 5-equation models

The so-called Kapila 5-equation model [13] is obtained from the
non-equilibrium Baer–Nunziato model [33] under the assumptions of
velocity and pressure equilibrium between the phases. The equations
for 2 components are

𝜕𝛼1𝜌1
𝜕𝑡

+∇ ⋅ (𝛼1𝜌1𝒖) = 0,

𝜕𝛼2𝜌2
𝜕𝑡

+∇ ⋅ (𝛼2𝜌2𝒖) = 0,

𝜕𝜌𝒖

𝜕𝑡
+∇ ⋅ (𝜌𝒖⊗ 𝒖+ 𝑝𝑰) = 0,

𝜕𝜌𝐸

𝜕𝑡
+∇ ⋅ [(𝜌𝐸 + 𝑝)𝒖] = 0,

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅∇𝛼1 =𝐾∇ ⋅ 𝒖,

where 𝜌, 𝒖, 𝑝, and 𝐸 are the mixture density, velocity, pressure, and
energy, and 𝛼𝑖 are the volume fractions of component 𝑖. The system
of equations is closed using an equation of state (EOS). Here, we use
the stiffened gas EOS, which can faithfully model many liquids and
gases [34]:

𝜌𝐸 = 1
𝛾 − 1

𝑝+
𝛾𝜋∞
𝛾 − 1

, (1)

though other relations can be used as appropriate. For a 2-component
problem, we have

𝐾 =
𝜌2𝑐

2
2 − 𝜌1𝑐

2
1

𝜌2𝑐
2
2

𝛼2
+
𝜌1𝑐

2
2

𝛼1

, (2)

and 𝐾∇ ⋅ 𝒖 represents the expansion and compression of each phase in
mixture regions and ensures thermodynamic consistency via the con-
servation of phase entropy. This admits a consistent representation of
the sound speed in the mixture region, though it can lead to numeri-
cal instabilities due to the non-conservative source term in the volume
fraction advection equation [16].

The 𝐾∇ ⋅ 𝒖 term can be ignored in cases where mixture compres-
sion effects are unimportant, though it is unclear how to determine this
a priori. For example, a case where they are known to be important is
spherical bubble dynamics [35]. If one can ignore this term, the equa-
tions degenerate to the Allaire model [14]. Though the Allaire model is
conservative, it does not strictly obey the second law of thermodynam-
ics.

2.2. A 5-equation model with hypoelasticity

A hypoelastic material model represents the elastic response of
solids [36]. The model is obtained by modifying the 5-equation model.
An elastic shear stress term 𝜏(𝑒)

𝑖𝑗
modifies the Cauchy stress tensor as

(𝑣) (𝑒)

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗 + 𝜏

𝑖𝑗
, (3)

A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

where 𝝉 (𝑣) is the viscous stresses. An elastic contribution 𝑒(𝑒) contributes
to the total energy 𝐸 as

𝐸 = 𝑒+ ‖𝒖‖2
2

+ 𝑒(𝑒) where 𝑒(𝑒) =
(𝜏(𝑒)
𝑖𝑗
)2

4𝜌𝐺
. (4)

Additional equations are required to track the elastic stresses. In 3D,
this is 6 additional equations, one for each stress term 𝜏(𝑒)

𝑖𝑗
where 𝑖, 𝑗 ∈

{1, 2, 3} and 𝝉 (𝑒) symmetric. With elastic contributions and additional
equations, the hypoelastic 5-equation model for 2 materials is

𝜕𝛼1𝜌1
𝜕𝑡

+∇ ⋅ (𝛼1𝜌1𝒖) = 0,

𝜕𝛼2𝜌2
𝜕𝑡

+∇ ⋅ (𝛼2𝜌2𝒖) = 0,

𝜕𝜌𝒖

𝜕𝑡
+∇ ⋅ (𝜌𝒖⊗ 𝒖+ 𝑝𝑰) + ∇ ⋅ (𝝉 (𝑒) + 𝝉 (𝑣)) = 0,

𝜕𝜌𝐸

𝜕𝑡
+∇ ⋅ [(𝜌𝐸 + 𝑝)𝒖] − ∇ ⋅ [(𝝉 (𝑒) + 𝝉 (𝑣))𝒖] = 0,

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅∇𝛼1 =𝐾∇ ⋅ 𝒖,

𝜕𝜏
(𝑒)
𝑖𝑙

𝜕𝑡
+∇ ⋅ (𝜏(𝑒)

𝑖𝑙
𝒖) = 𝑆(𝑒)

𝑖𝑙
,

where

𝑆𝑒
𝑖𝑙
= 𝜌

(
𝜏
(𝑒)
𝑘𝑗

𝜕𝑢𝑖

𝜕𝑥𝑘
+ 𝜏(𝑒)

𝑖𝑘

𝜕𝑢𝑗

𝜕𝑥𝑘
− 𝜏(𝑒)

𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
+ 2𝐺𝜖̇(𝑑)

𝑖𝑗

)
. (5)

2.3. 6-equation model with 𝑝-relaxation

The numerical instabilities introduced by the Kapila model can be
alleviated via the pressure disequilibrium model of Saurel et al. [15].
The system of equations is first evolved without the source terms, fol-
lowed by a pressure relaxation step under the assumption of infinite
stiffness for the pressure relaxation coefficient as discussed in Schmid-
mayer et al. [35].

3. Numerical method

Herein, we describe the numerical method that evaluates the gov-
erning 5/6-equation models of section 2.

3.1. Finite volume method (FVM)

A finite volume numerical scheme that follows Coralic and Colo-
nius [16] is used to discretize the governing equations

𝜕𝒒

𝜕𝑡
+
𝜕𝑭 𝑥(𝒒)
𝜕𝑥

+
𝜕𝑭 𝑦(𝒒)
𝜕𝑦

+
𝜕𝑭 𝑧(𝒒)
𝜕𝑧

= 𝒔(𝒒) − 𝒉(𝒒)∇ ⋅ 𝒖, (6)

where 𝒒 and 𝑭 represent the conservative variables and fluxes in the
governing equations. The finite volume method represents the conserva-
tive variables 𝒒𝑖,𝑗,𝑘 centered at the location (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘). The dimensions
of the cell are

𝐼𝑖,𝑗,𝑘 = [𝑥𝑖−1∕2, 𝑥𝑖+1∕2] × [𝑦𝑗−1∕2, 𝑦𝑗+1∕2] × [𝑧𝑘−1∕2, 𝑧𝑘+1∕2], (7)

with grid spacing

Δ𝑥𝑖 = 𝑥𝑖+1∕2 − 𝑥𝑖−1∕2, Δ𝑦𝑗 = 𝑦𝑗+1∕2 − 𝑦𝑗−1∕2, Δ𝑧𝑘 = 𝑧𝑘+1∕2 − 𝑧𝑘−1∕2.
(8)

The PDE (6) is integrated in space across each cell center as

𝜕𝒒𝑖,𝑗,𝑘

𝜕𝑡
= 1

Δ𝑥𝑖
(𝑭 𝑥

𝑖−1∕2,𝑗,𝑘 − 𝑭 𝑥
𝑖+1∕2,𝑗,𝑘) +

1
Δ𝑦𝑗

(𝑭 𝑦
𝑖,𝑗−1∕2,𝑘 − 𝑭

𝑦

𝑖,𝑗+1∕2,𝑘)

1 𝑧 𝑧

(9)
3

+
Δ𝑧𝑘

(𝑭
𝑖,𝑗,𝑘−1∕2 − 𝑭

𝑖,𝑗,𝑘+1∕2) + 𝒔(𝒒𝑖,𝑗,𝑘) − 𝒉(𝒒𝑖,𝑗,𝑘)(∇ ⋅ 𝒖)𝑖,𝑗,𝑘,
Computer Physics Communications 302 (2024) 109238

where 𝒒𝑖,𝑗,𝑘 are the volume averaged conservative variables, and
𝒔(𝒒𝑖,𝑗,𝑘) and 𝒉(𝒒𝑖,𝑗,𝑘) are the volume averaged source terms. The flux
term 𝑭 𝑥(𝒒𝑖+1∕2,𝑗,𝑘) is obtained by averaging over the finite volume cell
face 𝐴𝑖+1∕2,𝑗,𝑘 centered at

(
𝑥𝑖+1∕2, 𝑦𝑗 , 𝑧𝑘

)
. The other flux terms in (9) are

obtained using a similar procedure. The divergence term is computed
as

(∇ ⋅ 𝒖)𝑖,𝑗,𝑘 =
1

Δ𝑥𝑖
(𝑢𝑥
𝑖+1∕2,𝑗,𝑘 − 𝑢

𝑥
𝑖−1∕2,𝑗,𝑘) +

1
Δ𝑦𝑗

(𝑢𝑦
𝑖,𝑗+1∕2,𝑘 − 𝑢

𝑦

𝑖,𝑗−1∕2,𝑘)

+ 1
Δ𝑧𝑘

(𝑢𝑧
𝑖,𝑗,𝑘+1∕2 − 𝑢

𝑧
𝑖,𝑗,𝑘−1∕2),

(10)

where 𝑢𝑥
𝑖+1∕2,𝑗,𝑘 is the 𝑥 direction of the velocity averaged across the

cell face at grid point 𝐴𝑖+1∕2,𝑗,𝑘.

3.2. Shock capturing via reconstruction

The numerical scheme in section 3.1 requires the reconstruction of
the fluxes 𝑭 and the velocity 𝒖 at the cell faces. The state variable 𝒒 at
a cell face 𝐴𝑖+1∕2,𝑗,𝑘 is reconstructed from the face’s left and right sides,
resulting in a discontinuity. The resulting flux and velocity at the cell
face are obtained by solving a Riemann problem at the interface [37]:

𝑭 𝑥
𝑖+1∕2,𝑗,𝑘 = 𝑭 𝑥(𝒒L

𝑖+1∕2,𝑗,𝑘,𝒒
R
𝑖+1∕2,𝑗,𝑘)

𝒖𝑥
𝑖+1∕2,𝑗,𝑘 = 𝒖𝑥(𝒒L

𝑖+1∕2,𝑗,𝑘,𝒒
R
𝑖+1∕2,𝑗,𝑘).

The superscripts L and R denote the reconstructed state variable at the
left and right cell faces. A first-order, total variation diminishing ap-
proximation of the state variables at the interface 𝐴𝑖+1∕2,𝑗,𝑘 follows as

𝒒L
𝑖+1∕2,𝑗,𝑘 = 𝒒𝑖,𝑗,𝑘 and 𝒒R

𝑖+1∕2,𝑗,𝑘 = 𝒒𝑖+1,𝑗,𝑘. (11)

This scheme suppresses spurious oscillations at interfaces, but can
lose accuracy via their smearing. For this, high-order accurate recon-
structions at the interface help keep interfaces sharp for a given grid
resolution. Here, we will show results for a fifth-order-accurate WENO
reconstruction, though the method is also performant for the third-order
accurate variant.

WENO reconstruction follows from a convex combination of inter-
polating polynomials on candidate stencils. A (2𝑘 − 1)th-order WENO
reconstructed state variable 𝑓𝑖+1∕2,𝑗,𝑘 is obtained by a weighted sum of
𝑘 candidate polynomials as

𝑓𝑖+1∕2,𝑗,𝑘 =
𝑘∑
𝑟=0
𝜔𝑟
𝑖+1∕2𝑓

𝑟
𝑖+1∕2,𝑗,𝑘. (12)

The weights 𝜔𝑟 are obtained from ideal weights 𝑤𝑟 using smooth-
ness indicators 𝛽𝑟. Additional implementation details for WENO3 and
WENO5 are in Shu [38]. High-order WENO reconstructions are not to-
tal variation diminishing (TVD). This makes it susceptible to spurious
oscillations at material interfaces. To suppress these oscillations, the
conservative variables 𝒒 are converted to the primitive ones before re-
construction [16].

3.2.1. Approximate Riemann solver

The Riemann problem in section 3.2 is solved using an approximate
HLLC (Harten-Lax-van Leer contact) Riemann solver [39]. The HLLC
Riemann solver admits three discontinuities in the solution with wave
speeds 𝑠L, 𝑠∗, and 𝑠R. The resulting state at the cell interface 𝐴𝑖+1∕2,𝑗,𝑘
is given as

𝒒𝑖+1∕2,𝑗,𝑘 =

⎧⎪⎪⎨⎪
𝒒L
𝑖+1∕2,𝑗,𝑘 0 ≤ 𝑠L

𝒒L∗
𝑖+1∕2,𝑗,𝑘 𝑠L ≤ 0 ≤ 𝑠∗

𝒒R∗
𝑖+1∕2,𝑗,𝑘 𝑠∗ ≤ 0 ≤ 𝑠R

. (13)
⎪⎩𝒒R𝑖+1∕2,𝑗,𝑘 0 ≥ 𝑠R

A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

The wave speeds 𝑠L and 𝑠R are estimated using the state variables
𝒒L
𝑖+1∕2,𝑗,𝑘 and 𝒒R

𝑖+1∕2,𝑗,𝑘. In order to calculate the intermediate states
𝒒L∗
𝑖+1∕2,𝑗,𝑘 and 𝒒R∗

𝑖+1∕2,𝑗,𝑘, continuity of normal velocity (𝑢L∗ = 𝑢R∗ = 𝑢∗)
and pressure (𝑝L∗ = 𝑝R∗ = 𝑝∗) is imposed across the contact discontinu-
ity with speed 𝑠∗ = 𝑢∗. The flux at the cell interface is then calculated
as

𝑭 (𝒒𝑖+1∕2,𝑗,𝑘) =

⎧⎪⎪⎨⎪⎪⎩

𝑭 (𝒒L
𝑖+1∕2,𝑗,𝑘) 0 ≤ 𝑠L

𝑭 (𝒒L
𝑖+1∕2,𝑗,𝑘) + 𝑠L(𝒒

L∗
𝑖+1∕2,𝑗,𝑘 − 𝒒L

𝑖+1∕2,𝑗,𝑘) 𝑠L ≤ 0 ≤ 𝑠∗
𝑭 (𝒒R

𝑖+1∕2,𝑗,𝑘) + 𝑠R(𝒒
R∗
𝑖+1∕2,𝑗,𝑘 − 𝒒R

𝑖+1∕2,𝑗,𝑘) 𝑠∗ ≤ 0 ≤ 𝑠R
𝑭 (𝒒R

𝑖+1∕2,𝑗,𝑘) 0 ≥ 𝑠R

.

(14)

3.3. Boundary conditions

Boundary conditions are implemented by allocating buffers at the
domain edges. Buffer sizes are determined based on the order of WENO
reconstruction. Boundary conditions for time-dependent hyperbolic sys-
tems require knowledge of solutions exterior to the computational do-
main. We use characteristic-based boundary conditions for this purpose
[40].

3.4. Time stepping

Once the right-hand side of (9) is determined using spatial recon-
struction coupled with a Riemann solver, the solution is evolved in time
by discretizing the time derivative. For this purpose, a high-order total
variation diminishing Runge–Kutta time stepper [19] achieves temporal
accuracy while suppressing spurious oscillations.

4. Implementation strategy

4.1. Domain decomposition and I/O

Distributed computing techniques are essential to improve perfor-
mance at large scales. This is achieved by decomposing the domain into
3D blocks across multiple processors. The block dimensions for each
processor are kept uniform across all dimensions instead of splitting
across a single dimension (slabs). This is done to minimize the data
communicated at the processor boundaries.

We utilize a structured mesh with non-uniform spacing to discretize
the domain. Cartesian and Cylindrical geometries are supported, with
the axisymmetric option available for cylindrical grids. For 3D cylindri-
cal geometries, fast Fourier transforms maintain finite spacing along the
circumferential direction near the center. This is implemented with the
FFTW package on CPUs and cuFFT on NVIDIA GPUs [41]. Grid stretch-
ing through a hyperbolic tangent function is done to locally refine the
grids near locations of interest [42].

High-order reconstruction at processor boundaries requires knowl-
edge of the state variables outside the local domain. Communication of
the boundary data among adjacent processors, called the halo exchange,
is thus required across all dimensions at each time step. Blocking send
and receive MPI calls transfer data in the halo region [43]. Data in the
halo regions are packed into 1D buffers for compatibility with the MPI
subroutines and then unpacked into the requisite data structures. Ideal
weak and strong scaling is observed on multiple CPU cores [1].

Unsteady compressible flow simulations require I/O data saves at
a fixed number of time steps to obtain the temporal variation of the
solution. We use a parallel I/O framework for the file systems, which
enables collective MPI read and write functions [44]. I/O data dumps
can thus be performed in a distributed manner across all processors,
ensuring scalability of the code on modern supercomputers. Silo files
4

are exported from the data for analysis and visualization [45].
Computer Physics Communications 302 (2024) 109238

#:for NORM_DIR, dir in [(1, ’x’), (2, ’y’), (3, ’z’)]

if (norm_dir == ${NORM_DIR}$) then

!$acc parallel loop gang vector collapse (3) private(dvd,

poly, beta, alpha, omega)

do l = is3%beg, is3%end !third coordinate direction

do k = is2%beg, is2%end !second coordinate direction

do j = is1%beg, is1%end !first coordinate direction

!$acc loop seq

do i = 1, sys_size

!$acc loop seq

do q = -2, 1 !compute divided differences

dvd(q) = v_${dir}$(j + q + 1, k, l, i) &

- v_${dir}$(j + q, k, l, i)

end do

!$acc loop seq

do q = 0, 2

poly(q) = v_${dir}$(j, k, l, i) &

+ poly_coef_${dir}$(j, q, 0)*dvd(q+1) &

+ poly_coef_${dir}$(j, q, 1)*dvd(q)

beta(q) = beta_coef_${dir}$(j, q,

0)*dvd(1-q)*dvd(1-q) &

+ beta_coef_${dir}$(j, q,

1)*dvd(1-q)*dvd(-q) &

+ beta_coef_${dir}$(j, q, 2)*dvd(

-q)*dvd(-q)

end do

alpha = d_${dir}$(:, j)/(beta**2)

omega = alpha/sum(alpha)

vL_${dir}$(j, k, l, i) = sum(omega*poly)

end do

end do

end do

end do

end if

#:endfor

Listing 1: A Fortran90+Fypp code snippet of the WENO5 reconstruction
kernel.

4.2. GPU offloading

All computation within a time step is offloaded to GPUs via Ope-
nACC [27]. After applying the initial condition in the pre-processing
step, the state variables are copied to the GPUs. The state variables are
transferred back to the CPUs only during I/O data saves, typically occur-
ring once every one thousand steps for large problems. Directive-based
offloading in OpenACC only requires the specification of the location of
independent loops and the level of parallelization. This allows the com-
piler to decide the optimum kernel parameters for maximum speedup.
Another advantage of directive-based offloading is maintaining a com-
mon codebase for the CPU and GPU versions and enabling accelerators
via a compiler flag. cuTENSOR and cuFFT libraries are used for opti-
mized tensor reshapes and Fourier transforms on GPUs.

Our OpenACC implementation uses well-established directives, mak-
ing it portable. The code is compatible with NVHPC, GNU, and Cray
(CCE) compilers on NVIDIA GPUs and AMD GPU support for CCE and
GNU. Here, we conduct simulations on NVIDIA V100 (OLCF Summit)
and A100 GPUs (OLCF Wombat) using the NVHPC compiler. CPU sim-
ulations are also supported on various architectures using NVHPC and
GCC compilers with appropriate optimization flags. We test CPU simu-
lations on Intel Xeon Cascade Lake CPUs (PSC’s Bridges2), IBM Power9
CPUs (OLCF Summit), and Arm CPUs (OLCF Wombat).

A code snippet example of an OpenACC kernel used in MFC is given
in Listing 1. The kernel uses 5th-order-accurate WENO to reconstruct
the state variables at the cell faces. WENO reconstruction constitutes
about 40% of the total time step on GPUs, making it the most expensive
OpenACC kernel. Various optimization techniques used in Listing 1 to
improve kernel performance are detailed in section 4.3.

High-order WENO reconstruction of state variables entails larger
stencils. Larger stencils are commensurate with larger halo regions at
the processor boundaries and longer communication times. Halo ex-

change times on GPUs can be significant owing to faster kernel times

A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

over CPUs. Moreover, the proportion of data on the processor bound-
aries increases with decreasing problem size. Minimizing MPI communi-
cation time is thus essential to retain GPU speedups for smaller problem
sizes. For this purpose, we use CUDA-aware MPI and GPUDirect RDMA
to accelerate communication by using fast GPU interconnects [46]. We
observe 4-times performance improvement for halo exchanges using
CUDA-aware MPI over conventional MPI communication with Spec-
trum MPI 10.4 on OLCF Summit.

4.3. Optimization

OpenACC kernels use gangs, workers, and vectors to distribute the
workload, which maps to blocks, warps, and vectors in CUDA notation.
The parallel loop constructs in OpenACC split the loop iterations
across gangs by default. This usually leads to each block using a single
OpenACC vector, resulting in a huge waste of resources. The parallel
loop construct in Listing 1 is thus augmented with a gang vector
clause that enables the splitting of the loop iterations across multiple
gangs of fixed vector length [47]. The compiler chooses the optimum
number of gangs and vectors for efficient resource allocation [47]. Fur-
thermore, the three loops across multiple dimensions in Listing 1 are
combined into a single loop using the collapse(3) clause. This al-
lows the compiler to choose optimal gang and vector sizes for a specific
architecture based on the total problem size, thus eliminating the effect
of any skewness in the grid dimensions. The fourth loop in Listing 1 ben-
efits from serialization due to its smaller loop bounds, with sys_size
typically between 5 and 9 for multiphase problems.

Compressible flow algorithms are primarily vector operations, typ-
ically leading to low arithmetic intensity. Potential for improved GPU
performance was observed in the computationally intensive WENO re-
construction kernel, outlined in Listing 1, through a high degree of
memory reuse. Flattened multidimensional arrays are preferred over
user-defined data types, allowing for aggressive compiler optimizations
in GPU kernels. A 6-times performance improvement was observed us-
ing multidimensional arrays for the kernel in Listing 1 over user-defined
data types for a 3D problem with 1M (106) grid points.

Memory coalescence is needed to saturate the GPU’s global memory
bandwidth. This can be achieved by ensuring that successive threads
in a parallelized loop access consecutive memory locations. Previous
serialized implementations benefited from switching the inner and
outer loops in Listing 1 corresponding to iteration variables j and k.
This allowed for reusability of the coefficient variables (poly_coef,
beta_coef) across the iterations of the inner loop. However, reorder-
ing the two loops, as in Listing 1, ensured thread coalescence across
inner iterations and proved beneficial for GPU implementation.

Dimensional splitting in the finite volume method requires inde-
pendent reconstructions and flux additions across all dimensions. This
allows for temporarily reshaping the state variables to achieve coa-
lesced memory access. The additional cost of reshaping state variables
is mitigated by the high degree of reuse of the reshaped variables in the
computationally intensive GPU kernels. The state variables (v, vL) in
Listing 1 are reshaped so that the fastest-changing index j matches the
direction of reconstruction. Reshaping the state variables for the ker-
nel in Listing 1 results in a 10-times speedup for a 3D problem with
1M grid points per NVIDIA V100 GPU. The cuTENSOR library reshapes
these arrays on NVIDIA GPUs, though we observe similar performance
when reshaping manually via array loops.

Metaprogramming techniques, in this case, enabled by the Fypp pre-
processor [48], further improves GPU kernel performance. It allows for
user inputs to be passed as compile-time constants, which are used to al-
locate fixed-size thread-local arrays in GPUs. Their availability as fixed-
size arrays allows the compiler to introduce additional optimizations in
the kernel and thus primarily (fast) register memory accesses. Fixed pa-
rameters are also used to eliminate large conditional blocks in kernels,
leading to improved times via judicious use of available GPU regis-
5

ters. Kernel duplication across multiple dimensions in Listing 1 is also
Computer Physics Communications 302 (2024) 109238

eliminated through the use of Fypp macros (#:for NORM_DIR). This
strategy results in 8- and 2-times speedups of the two most expensive
kernels associated with WENO and the Riemann solver, respectively.
OpenACC does not automatically inline serial subroutines within GPU
kernels. This can cause a 10-times slowdown of kernels with sequen-
tial subroutine calls. Fypp enables manual inlining of these subroutines
to retain compiler optimizations and speedups. Fypp is only a metapro-
gramming tool, so it does not generate any code that a programmer
could not write themselves. However, it does write code a programmer
is unlikely to write themselves out of the sheer work and repeated opti-
mizations required. In the case of MFC, fypp also enables a reduced line
count by about a factor of 10.

The same core kernel code is used for CPUs and GPUs. After op-
timization, we found a minor speedup in the CPU simulations before
GPU porting. Thus, no meaningful performance difference is observed
on CPUs by optimizing for GPUs via OpenACC offloading.

4.4. Validation

MFC has been validated on test cases via comparisons to experi-
mental results for various physical problems such as shock-bubble in-
teraction, shock-droplet, spherical bubble collapse, and Taylor–Green
vortices [1]. The results are verified to be high-order accurate by mon-
itoring error convergence. Solutions are also free of any spurious oscil-
lations at material interfaces.

5. Performance results

The 5-equation model in section 2.1 is used to obtain performance
metrics for both CPUs and GPUs. Similar GPU speedups and scaling are
observed for the 5-equation hypoelastic model in section 2.2 and the
6-equation model in section 2.3.

5.1. Scaling

The scalability of the code is probed by examining wall times for
a 3D 2-component problem with air and water on OLCF Summit. The
hardware details of Summit are available in Vergara Larrea et al. [49].
In brief, Summit is an IBM system of AC922 POWER nodes. It con-
tains 4600 compute nodes, each with 2 IBM POWER9 processors and
6 NVIDIA V100 GPUs. Each POWER9 chip is connected via NVLINK
with a bandwidth of 25 GB/s. Each node has 96 GB of HBM2 GPU
memory. The wall times are averaged across 10 time steps during a
simulation, which is sufficient for variability to be sufficiently small
that it is visually indistinguishable on subsequent plots. The processor
with maximum wall time is used to examine results.

5.1.1. Weak scaling

The problem size per GPU or CPU is 1M grid points in 3D with 1
MPI rank per processor. Here, the problem size increases proportion-
ately to the number of processors to test weak scaling. Fig. 1 shows
the weak scaling performance using NVIDIA V100 GPUs and POWER9
CPUs on OLCF Summit. The wall times are normalized using the base
case with 216 GPUs and 112 CPU cores, respectively. A near-ideal effi-
ciency of 97% is observed for at least 13824 GPUs. Efficiency is within
1% of ideal performance for at least 14336 CPU cores. A higher weak
scaling efficiency on CPUs over GPUs can be attributed to the negligible
contribution of halo exchanges.

5.1.2. Strong scaling

We use the same 3D 2-component problem as the weak scaling test
on Summit to observe strong scaling performance. This is achieved by
fixing the total problem size and increasing the number of processors.
The base case uses 8 GPUs or CPU cores, with 1 MPI rank per core. For
GPU cases, this corresponds to one core binding to each GPU. We use

problem sizes of 64 and 16 M grid points with the base case using 8 and

Computer Physics Communications 302 (2024) 109238A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

Fig. 1. Weak scaling for a 3D 2-phase problem on (a) NVIDIA V100 GPUs and (b) POWER9 CPUs.
Fig. 2. Strong scaling results on POWER9 CPUs for a 3D 2-component problem
with sized as labeled.

Table 1

Strong scaling simulation times for the 64M grid point case of Fig. 3 (b).

GPUs CUMPI MPI

Actual [s] Ideal [s] Actual [s] Ideal [s]

8 0.273 0.273 0.341 0.341
16 0.146 0.137 0.199 0.171
32 0.0710 0.0683 0.101 0.0853
64 0.0408 0.0341 0.0542 0.0426
128 0.0286 0.0171 0.0417 0.0213

2 M grid points per GPU or CPU, respectively. For simulations with GPU
quantities that are not multiple of 6, the extra GPUs are spilled onto the
next node.

Fig. 2 shows strong scaling performance on POWER9 CPUs on OLCF
Summit. We observe ideal scaling varying from one to six nodes. This
indicates that communication is negligible for CPU simulations and
problems of appreciable size, which is discussed further in section 5.2.
This contrasts against GPU simulations, for which computational time
is markedly shorter but network communication times are not. Fig. 3
shows strong scaling performance using NVIDIA V100 GPUs with and
without GPU-aware MPI on OLCF Summit. An increase in processor
count leads to decreased problem size per GPU. Deviation from ideal
performance is expected due to the increasing share of MPI communi-
cation.

CUDA-aware MPI and the GPUDirect RDMA use fast GPU inter-
connects to achieve up to 4-times faster halo exchanges. This can be
observed for the largest problem size (64M) in Fig. 3 and in more detail
in Table 1, retaining 84% of ideal performance for a factor of 8 increase
in processor count. A larger deviation from ideal performance is ob-
served without CUDA-aware MPI. The problem size is chosen to be close
to the memory limit of an NVIDIA V100-16 GB SMX2 GPU. However,
deviations from ideal behavior are observed for smaller problem sizes
(16M) at larger numbers of GPUs (64 and 128). This can be attributed
6

to MPI communication dominating the simulation time (> 50% of wall
Table 2

Percentage contributions of the most expensive subroutines per time step. The
GPUs are NVIDIA V100s, and the CPUs are IBM POWER9s. The problem size
per CPU or GPU as labeled (1M and 8M).

Subroutine GPU(1M)% GPU(8M)% CPU(1M)% CPU(8M)%

Reconstruction 37.0 43.3 72.9 71.7
Riemann Solve 24.7 33.3 16.4 18.7
Communication 17.6 5.81 3.64 3.83
Other 20.7 17.6 7.06 5.77

time) as the compute required per GPU diminishes more quickly but
the communication does not. Of course, one expects a full plateau and
nearly 100% of the time spent doing communication for a sufficiently
large number of GPUs.

5.2. Profiles and I/O

We monitor the contribution of various subroutines in the code to
the total simulation time for GPUs and CPUs. This is done by measuring
the wall times of the most expensive routines for a single time step. The
wall times are averaged across 10-time steps, and the processor with
maximum wall time is used for runs with multiple processors. Table 2
shows the percentage contribution of most expensive subroutines for a
3D 2-component problem using 4 NVIDIA V100 GPUs on OLCF Summit.
CPU simulations use GNU compilers with -Ofast optimization flag. We
test a relatively small problem with 4M grid points (1M per processor
or accelerator) and a larger problem with 32M grid points (8M per
processor or accelerator). The larger problem size is chosen to be close
to the hardware limit of an NVIDIA V100-16 GB SMX2 GPU (16 GB).

WENO reconstruction is observed to be the most expensive kernel in
MFC, taking around 40% and 70% of the time step for GPUs and CPUs.
A relatively smaller contribution of the WENO kernel on GPUs indicates
large speedups for this kernel. MPI communication time on GPUs has
a decreasing contribution to the overall simulation time with increas-
ing problem size. The contribution of MPI communication on CPUs is
relatively insignificant (≈ 1%) and invariant to problem size. It should
be noted that I/O data saves, while insignificant on CPUs, require the
equivalent of about 10 time step units on GPUs. However, CFL-restricted
time step sizes mean data saves are typically conducted once every 1000
steps. Hence, simulation times remain largely unaffected by I/O trans-
fers on all architectures.

5.3. Kernel performance

The analysis of system profiles in section 5.2 indicates that WENO
and Riemann solver kernels account for over 75% of the simulation time
on GPUs for large problem sizes (8 M per GPU). Individual speedups of
the most expensive subroutines using GPUs over CPUs for the larger
simulation in section 5.2 are given in Table 3. Large speedups (480-

times) for the most expensive WENO kernel on GPUs result from coa-

Computer Physics Communications 302 (2024) 109238A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

Fig. 3. Strong scaling analysis on NVIDIA V100 GPUs with and without CUDA-aware MPI (CUMPI) for a 3D 2-component problem with problem sizes (number of
grid points) as labeled.
Table 3

Speedups (times faster) for the most expen-
sive subroutines and the overall time step us-
ing V100 GPUs over a POWER9 CPU for a 3D
2-component problem with 8M grid points
on OLCF Summit. This problem uses 4 GPUs
and 4 CPU cores.

Subroutine Speedup

Reconstruction 486
Riemann Solver 189
Communication 125

Total 305

Fig. 4. Roofline analysis for the two most expensive kernels, WENO and Rie-
mann solvers. The kernels and rooflines are associated with double precision
(DP) computation and fused multiply-add (FMA) operations.

lesced memory access and a high degree of reuse. The Riemann solvers
kernel achieves lower speedups on GPUs due to a large number of
thread-local variables and a low degree of memory reuse. Speedups
in the MPI subroutines are observed due to faster buffer packing and
unpacking on GPUs and CUDA-aware MPI. A 300-times speedup is ob-
served for the time step using a single V100 GPU over a POWER9 CPU
core. On a single Summit compute node, this translates to a 40-times
speedup using the GPUs over only the CPUs.

A roofline analysis of the two most expensive kernels, WENO re-
construction and Riemann solvers, on NVIDIA A100 and V100 GPUs
and double precision rooflines using NVIDIA Nsight Compute [50] are
shown in Fig. 4. A high arithmetic intensity of 10 FLOP/byte and over
40% of the peak double precision FLOPs are observed for the WENO
kernel on both GPUs. The kernel achieves a bandwidth of 305 GB∕s on
the V100 GPU, with the peak bandwidth being 900GB∕s. Kernel opti-
mizations and high memory reuse are largely responsible for efficiently
7

utilizing compute resources. In contrast, the Riemann solvers have a
Table 4

Comparison of wall times per time step on various
architectures. The Intel Xeon Gold chips are the Cas-
cade Lake architecture, and Ampere indicates the Am-
pere Altra Q80-30 chip. The A/V100 GPU simulations
use the NVHPC v22.1 compiler, and the CPUs use
GNU v11.1 (the fastest among tested compilers).

Cores Time [s] Slowdown

A100 — 0.28 Ref.
V100 — 0.50 1.7
Xeon 40 2.1 7.3
Ampere 40 2.7 9.2
Power9 42 3.5 12

lower arithmetic intensity (2 FLOP/byte) and only achieve about 10%
of the peak double precision FLOPs on both GPUs. This can be attributed
to low memory reuse and an abundance of conditional statements in this
kernel. However, efforts to alleviate performance issues by employing
single-precision arithmetic in the Riemann solvers kernel are currently
being pursued.

5.4. Architecture comparisons

The portability of our acceleration strategies is verified by testing
performance on various hardware architectures. We tested performance
on several CPUs: Ampere Altra Q80-30 (located on OLCF Wombat), In-
tel Xeon Gold Cascade Lake (SKU 6248 m, PSC Bridges2), and IBM
Power9 (OLCF Summit). NVHPC and GCC11 compilers were tested with
-fast and -Ofast compiler optimization flags, respectively. GPU per-
formance was analyzed for the NVIDIA V100 (OLCF Summit) and A100
(OLCF Wombat) using the NVHPC 22.1 compiler with the -Ofast flag.
All computations are double precision. A 3D two-component problem
with 16 M grid points on 2 MPI ranks was used for testing. The wall
time was averaged over 10 time steps.

Table 4 shows average wall times and relative performance met-
rics for the different hardware. The “Time” column has little absolute
meaning, with the relative performance being the most meaningful (also
shown in the last column). In Table 4, the performance of a single GPU
is compared to that of the CPU chip, with the CPU wall times normal-
ized by the number of CPU cores per chip.

The results show that the A100 GPU is 1.72-times faster than the
V100 on OLCF Summit, faster than even the peak double-precision per-
formance would anticipate between the two cards (a factor of 1.24).
This can be attributed to higher memory bandwidth (1.7-times) and
faster GPU interconnects (2-times) on an A100 over a V100. A sin-
gle A100 also gives a 7.3-times speedup over the Intel Xeon Cascade
Lake, the fastest CPU chip. Increasing the number of GPU ranks has a

negligible effect (≈ 15%) on performance due to the relatively small

A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

Fig. 5. Cost breakdown of different MFC subroutines on various architectures
for a 3D 2-component problem with 16 M grid points. Cases V100 and A100
have all compute kernels on the respective GPUs, so the associated CPU archi-
tecture is not meaningful. Numbers above the bars indicate the absolute wall
time in seconds, also shown in Table 4, which are the fastest times amongst
tested compilers (NVHPC and GCC). The CPU cases use GCC v11.1 compilers
except for the A64FX case, which used NVHPC 22.1 compilers. The GPU cases
use the NVHPC 22.1 compiler.

contribution of the MPI subroutine section 5.3. The GNU11 compilers
give shorter wall times than the NVHPC compilers on all CPU archi-
tectures. The Ampere Altra CPUs are 1.4-times faster when compared
to the POWER9s and 1.2-times slower than the Intel Xeons. The Arm-
based CPUs (Ampere Altra) are more energy- and cost-efficient than
their x86 counterparts (Intel Xeon) under their reduced instruction set
(RISC). While performance on x86 CPUs is superior, future trends indi-
cate a growing popularity for Arm chips in high-performance computing
applications [51]. The performance for different Arm chips, including
the TX2 and A64FX, and their compilers are discussed for various ap-
plications, including MFC, in Elwasif et al. [52].

Fig. 5 shows a timestep normalized breakdown of the duration of
the most expensive MFC routines. The two left columns indicate ker-
nel times on GPUs; the rest are CPU-only. All computation is offloaded
to accelerators, with CPUs being used only for I/O operations and halo
exchanges on systems with no support for GPU-aware MPI. MPI commu-
nication constitutes a meaningful proportion of the total time on GPUs
while being negligible on CPUs. This can be attributed to much larger
speedups in computation on GPUs over CPUs as compared to MPI com-
munication. The relative proportion of various routines remains nearly
constant across CPU and GPU architectures. In addition to the architec-
tures of Table 4, Fig. 5 includes results for older Arm architectures like
the ThunderX2 (TX2) and Fujitsu A64FX. These processors are mod-
estly slower than more modern x86 or Arm chips, though the profiles
are qualitatively similar to the other CPUs.

6. Example simulations

We demonstrate the capability and flexibility of the method de-
scribed via a large multiphase simulation of different test configura-
tions. GPU speedups are consistent with those of section 5.

6.1. Cavitating bubble cloud

The first example case simulates the collapse of 50 air bubbles in
water at ambient pressure (1 atm) near a wall when subject to a 10 atm
pressure wave. The density of the fluids follows from those at standard
temperature and pressure. The stiffened-gas equation of state represents
both fluids [34]. This example simulation uses 216 M grid points and 60
8

grid points across each initial bubble diameter. We simulate for 3 × 105
Computer Physics Communications 302 (2024) 109238

time steps, corresponding to a dimensionless time 𝜏 ≡ 𝑡𝑐∕𝑅0 = 42 for
air sound speed 𝑐 and equilibrium bubble radii 𝑅0.

Fig. 6 shows the wall pressure contours and streamlines of the col-
lapsing bubble cloud and the isocontours of air volume fraction. Here,
we use 216 GPUs (36 nodes) on Summit, or 1 M points per GPU, which
amounts to 3 hours of wall-time for this simulation. Using POWER9
CPUs on the same compute nodes would require more than 2 days for
the same problem. We save the simulation state to disk every 1000 time
steps. Each data export requires about ten steps worth of wall time, so
this cost has a negligible impact on performance.

6.2. Shock–bubble-cloud–stone interaction

The approach of this manuscript can also simulate the shock-induced
collapse of air bubbles near a model kidney stone. This, in part, demon-
strates the efficiency and capabilities of the method. The configura-
tion of interest is similar in spirit to shock- and burst-wave lithotripsy
[6,53].

Here, we consider a dispersion of 17 air bubbles initially near a
model stone and submerged in water. The impinging shock has a Mach
number 𝑀𝑠 = 7.92. The BegoStone material represents the stone [54],
a kidney stone phantom in lithotripsy research trials [55]. BegoS-
tone has a density of 𝜌 = 1995 kg∕m3 and longitudinal and transverse
wavespeeds 𝑐𝐿 = 4159m∕s and 𝑐𝑇 = 2319m∕s.

The hypoelastic model described in section 2.2 represents elastic
stresses in the stone and carries out this simulation. The simulation do-
main is 2.67𝐷 in the mean flow direction and 1𝐷 in the transverse
and spanwise directions, where 𝐷 is the stone’s diameter. A structured
1600 × 600 × 600 Cartesian grid (576M grid points) discretizes the do-
main. This simulation was conducted on 576 GPUs (96 nodes) on OLCF
Summit for 25 ×103 time steps, corresponding to a wall-time of 30 min-
utes.

Fig. 7 shows maximum principal stresses (defined in the usual way)
in the stone at 𝜏 ≡ 𝑡𝑐∕𝑅0 = 2.03 for air sound speed 𝑐 and initial bubble
radius 𝑅0. These stresses follow from the shock, and the later bubble
collapses. As expected, we observe larger stresses near the center of the
bubble cloud and stone cross-section.

6.3. Atomizing droplet

The third example simulation shows the atomization of a 3D water
droplet in air impinged by a Mach 1.46 shock wave. The domain is 20
𝐷 in the mean flow direction and 10 𝐷 in the transverse and spanwise
directions, where 𝐷 is the initial droplet diameter. A 2000 ×1000 ×1000
Cartesian grid (2B grid points) discretizes the domain. Stretching locally
refines and stretches the grid near the droplet as

𝑥stretch = 𝑥+
𝑥

𝑎𝑥

[
log

(
cosh

(
𝑎𝑥(𝑥− 𝑥𝑎)

𝐿

))
+

log
(
cosh

(
𝑎𝑥(𝑥− 𝑥𝑏)

𝐿

))

− 2 log
(
cosh

(
𝑎𝑥(𝑥𝑏 − 𝑥𝑎)

2𝐿

))] (15)

where 𝑎𝑥 is the stretch magnitude, 𝐿 is the domain length, and 𝑥𝑎 and
𝑥𝑏 control where stretching occurs. The droplet is centered at the ori-
gin, with 𝑥𝑎 = −1.2𝐷 and 𝑥𝑏 = 1.2𝐷 and stretching factor 𝑎𝑥 = 4 across
all coordinate directions. This flow is simulated for 2 × 105 time steps
with a dimensionless timestep Δ𝜏 = 9.6 ×10−6, and the simulation state
is saved every 1000 time steps. The simulation is conducted on OLCF
Summit using 960 GPUs (160 nodes), which amounts to 4 hours of wall-
time.

Fig. 8 shows the vorticity (𝝎) magnitude isosurface ‖𝝎‖ = 105 at
dimensionless time 𝜏 = 1.43, where 𝜏 ≡ 𝑡𝑢𝑔∕𝐷

√
𝜌𝑔∕𝜌𝑙 , for shock ve-

locity 𝑢𝑔 and post-shock gas and liquid densities 𝜌𝑔 and 𝜌𝑙 . The shock

wave leads to two counter-rotating vorticity streams in the wake of the

Computer Physics Communications 302 (2024) 109238A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

Fig. 6. Illustrative MFC simulation of a collapsing bubble cloud near a wall. Results show the bubbles as contours of 𝛼1 = 0.5 and pressures and streamlines as
labeled. In (a), red colors are larger pressures, and blue colors are lower. (For interpretation of the colors in the figure(s), the reader is referred to the web version
of this article.)

Fig. 7. Illustrative simulation of a kidney stone near a collapsing bubble cloud. Reds indicate higher stresses, and blues indicate lower stresses. The bubble and stone
isosurfaces are shown for volume fraction 𝛼 = 0.5.

Fig. 8. Vorticity isocontours ‖𝝎‖ = 105 around a shedding water droplet.
droplet, forming a recirculation region as shown in Fig. 8. This simula-
tion agrees with previous studies of droplet aerobreakup [56], though
it requires shorter wall times and makes judicious use of the latest ac-
celerators.

7. Conclusions

We present a GPU-accelerated multiphase compressible flow solver,
MFC, capable of simulating various physical phenomena. Optimization
techniques are used to facilitate efficient memory use in computation-
9

ally expensive kernels. This enables higher arithmetic intensity over
typical CFD algorithms for compressible flow. Further performance im-
provements are observed through metaprogramming techniques via
Fypp. Portability of the implementation is ensured through directive-
based offloading via OpenACC, and performance is tested on NVIDIA
GPUs as well as Intel Xeon, IBM POWER9, and ARM CPUs. A 40-times
speedup is observed on a single Summit node using NVIDIA V100 GPUs
over POWER9 CPUs.

Multi-GPU performance is examined by conducting weak and strong
scaling tests. Near ideal weak scaling (with 3%) is observed for up to
13824 GPUs on Summit. CUDA-aware MPI coupled with the GPUDi-

rect RDMA further reduces communication overhead on GPUs, reducing

A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

simulation time for all cases tested. Level-3 MPI parallel I/O ensures
that the cost of data dumps is negligible for large simulations. Scaling
and speedup results show significant improvement over previous mul-
tiphase implementations [30] and are comparable to previous single-
phase implementations [21,23].

The ability to conduct large multiphase simulations was tested by
conducting large multi-GPU simulations across many compute nodes.
The example simulations performed (105) time steps within a few
hours on NVIDIA GPUs instead of a few days on current x86 and ARM
multicore CPU processors. This strategy is poised to enable the efficient
use of existing and upcoming exascale systems like OLCF Frontier and
LLNL El Capitan for state-of-the-art compressible multiphase flow sim-
ulations.

CRediT authorship contribution statement

Anand Radhakrishnan: Writing – review & editing, Writing –
original draft, Software, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization. Henry Le Berre: Writing – original
draft, Software, Methodology, Conceptualization. Benjamin Wilfong:

Software, Methodology. Jean-Sebastien Spratt: Software. Mauro Ro-

driguez: Software. Tim Colonius: Supervision, Funding acquisition.
Spencer H. Bryngelson: Writing – review & editing, Writing – original
draft, Validation, Supervision, Software, Resources, Project administra-
tion, Methodology, Investigation, Funding acquisition, Formal analysis,
Data curation, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Spencer Bryngelson reports financial support was provided by Office of
Naval Research.

Data availability

I have shared all code and the link is in the footnote on page 1.

Acknowledgements

We acknowledge useful discussions of this work from Brent Leback
and Mat Colgrove (NVIDIA), Stéphan Ethier (Princeton), Nicholson
Koukpaizan (Oak Ridge National Lab), Pedro Costa (TU Delft), and Luca
Brandt (KTH, Sweeden). SHB acknowledges the support of this work via
the US Office of Naval Research under grant number N00014-22-1-2519
(PM Julie Young), hardware gifts from the NVIDIA Corporation, and use
of OLCF Summit and Wombat under allocation CFD154. TC acknowl-
edges support via the US Office of Naval Research under grant number
N00014-22-1-2518 (PM Julie Young). This work used Bridges2 at the
Pittsburgh Supercomputing Center through allocation PHY210084 from
the Advanced Cyberinfrastructure Coordination Ecosystem: Services &
Support (ACCESS) program, which is supported by National Science
Foundation grants #2138259, #2138286, #2138307, #2137603, and
#2138296.

References

[1] S.H. Bryngelson, K. Schmidmayer, V. Coralic, J.C. Meng, K. Maeda, T. Colonius,
MFC: an open-source high-order multi-component, multi-phase, and multi-scale
compressible flow solver, Comput. Phys. Commun. 266 (2021) 107396.

[2] J.C. Meng, Numerical Simulations of Droplet Aerobreakup, Ph.D. thesis, California
Institute of Technology, 2016.

[3] C. Brennen, Cavitation in medicine, Interface Focus 5 (2015) 20150022.
[4] A. Chauvin, G. Jourdan, E. Daniel, L. Houas, R. Tosello, Experimental investigation

of the propagation of a planar shock wave through a two-phase gas-liquid medium,
Phys. Fluids 23 (2011) 113301.

[5] P. Johansen, Mechanical heart valve cavitation, Expert Rev. Med. Devices 1 (2004)
10

95–104.
Computer Physics Communications 302 (2024) 109238

[6] K. Maeda, A.D. Maxwell, W. Kreider, T. Colonius, M.R. Bailey, Investigation of the
energy shielding of kidney stones by cavitation bubble clouds during burst wave
lithotripsy, in: J. Katz (Ed.), Proceedings of the 10th International Symposium on
Cavitation (CAV2018), ASME Press, 2018, pp. 626–630.

[7] P. Movahed, W. Kreider, A.D. Maxwell, S.B. Hutchens, J.B. Freund, Cavitation-
induced damage of soft materials by focused ultrasound bursts: a fracture-based
bubble dynamics model, J. Acoust. Soc. Am. 140 (2016) 1374–1386.

[8] J.H. Seo, S.K. Lele, Numerical investigation of cloud cavitation and cavitation noise
on a hydrofoil section, in: CAV2009, 2009, p. 15.

[9] L. d’Agostino, M.V. Salvetti (Eds.), Cavitation Instabilities and Rotordynamic Effects
in Turbopumps and Hydroturbines: Turbopump and Inducer Cavitation, Experi-
ments and Design, CISM International Centre for Mechanical Sciences, vol. 575,
Springer International Publishing, Cham, 2017.

[10] L. Jofre, J. Urzay, Transcritical diffuse-interface hydrodynamics of propellants in
high-pressure combustors of chemical propulsion systems, Prog. Energy Combust.
Sci. 82 (2021) 100877.

[11] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, K. Yelick, Optimization and per-
formance modeling of stencil computations on modern microprocessors, SIAM Rev.
51 (2009) 129–159.

[12] R. Saurel, C. Pantano, Diffuse-interface capturing methods for compressible two-
phase flows, Annu. Rev. Fluid Mech. 50 (2018) 105–130.

[13] A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of
deflagration-to-detonation transition in granular materials: reduced equations, Phys.
Fluids 13 (2001) 3002–3024.

[14] G. Allaire, S. Clerc, S. Kokh, A five-equation model for the simulation of interfaces
between compressible fluids, J. Comput. Phys. 181 (2002) 577–616.

[15] R. Saurel, F. Petitpas, R.A. Berry, Simple and efficient relaxation methods for in-
terfaces separating compressible fluids, cavitating flows and shocks in multiphase
mixtures, J. Comput. Phys. 228 (2009) 1678–1712.

[16] V. Coralic, T. Colonius, Finite-volume WENO scheme for viscous compressible mul-
ticomponent flows, J. Comput. Phys. 274 (2014) 95–121.

[17] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Com-
put. Phys. 126 (1996) 202–228.

[18] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction, 3 ed., Springer, Dordrecht/New York, 2009.

[19] S. Gottlieb, C.-W. Shu, Total variation diminishing Runge–Kutta schemes, Math.
Comput. 67 (1998) 73–85.

[20] U. Rasthofer, F. Wermelinger, P. Karnakov, J. Šukys, P. Koumoutsakos, Computa-
tional study of the collapse of a cloud with 12500 gas bubbles in a liquid, Phys. Rev.
Fluids 4 (2019) 063602.

[21] M. Bernardini, D. Modesti, F. Salvadore, S. Pirozzoli, STREAmS: a high-fidelity ac-
celerated solver for direct numerical simulation of compressible turbulent flows,
Comput. Phys. Commun. 263 (2021) 107906.

[22] M. Bernardini, D. Modesti, F. Salvadore, S. Sathyanarayana, G. Della Posta, S. Piroz-
zoli, STREAmS-2.0: supersonic turbulent accelerated Navier–Stokes solver version
2.0, Comput. Phys. Commun. 285 (2023) 108644.

[23] J. Romero, J. Crabill, J. Watkins, F. Witherden, A. Jameson, ZEFR: a GPU-
accelerated high-order solver for compressible viscous flows using the flux recon-
struction method, Comput. Phys. Commun. 250 (2020) 107169.

[24] V. Melesse Vergara, R. Budiardja, M. Davis, M. Ezell, J. Hanley, C. Zimmer, M.
Brim, W. Elwasif, D. Dietz, Approaching the Final Frontier: Lessons Learned from the
Deployment of HPE/Cray EX Spock and Crusher supercomputers, Technical Report,
Oak Ridge National Lab (ORNL), Oak, Ridge, TN (United States), 2022.

[25] T. Zwinger, J. Heikonen, P. Manninen, LUMI supercomputer for European re-
searchers, Technical Report, Copernicus Meetings, 2023.

[26] H. Jiang, Intel’s Ponte Vecchio GPU: Architecture, Systems & Software, in: 2022
IEEE Hot Chips 34 Symposium (HCS), IEEE Computer Society, 2022, pp. 1–29.

[27] S. Wienke, P. Springer, C. Terboven, D. an Mey, OpenACC—first experiences with
real-world applications, in: European Conference on Parallel Processing, Springer,
2012, pp. 859–870.

[28] M. Khalilov, A. Timoveev, Performance Analysis of CUDA, OpenACC and OpenMP
Programming Models on TESLA V100 GPU, Journal of Physics: Conference Series,
vol. 1740, IOP Publishing, 2021, p. 012056.

[29] A. Jarmusch, A. Liu, C. Munley, D. Horta, V. Ravichandran, J. Denny, K. Fried-
line, S. Chandrasekaran, Analysis of validating and verifying OpenACC compilers
3.0 and above, in: 2022 Workshop on Accelerator Programming Using Directives
(WACCPD), IEEE, 2022, pp. 1–10.

[30] M. Crialesi-Esposito, N. Scapin, A.D. Demou, M.E. Rosti, P. Costa, F. Spiga, L. Brandt,
FluTAS: a GPU-accelerated finite difference code for multiphase flows, Comput.
Phys. Commun. 284 (2023) 108602.

[31] S. Varrette, Uni. Lu HPC Annual Report 2020, Technical Report, University of Lux-
embourg, 2021.

[32] F. De Vanna, F. Avanzi, M. Cogo, S. Sandrin, M. Bettencourt, F. Picano, E. Benini,
URANOS: a GPU accelerated Navier–Stokes solver for compressible wall-bounded
flows, Comput. Phys. Commun. 287 (2023) 108717.

[33] N. Andrianov, G. Warnecke, The Riemann problem for the Baer–Nunziato two-phase
flow model, J. Comput. Phys. 195 (2004) 434–464.

[34] O. Le Métayer, R. Saurel, The Noble–Abel stiffened-gas equation of state, Phys. Flu-

ids 28 (2016) 046102.

http://refhub.elsevier.com/S0010-4655(24)00161-9/bibD88A8DFED091409F512EA57919862E3Cs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibD88A8DFED091409F512EA57919862E3Cs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibD88A8DFED091409F512EA57919862E3Cs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib39E9A02ADB8A0FFB7EC20DDF80524696s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib39E9A02ADB8A0FFB7EC20DDF80524696s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib6F4553F6CF9C2B16ABC35644CFFC0822s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibDE1ADCCFD9FF352AC5F4426C3CD80A6As1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibDE1ADCCFD9FF352AC5F4426C3CD80A6As1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibDE1ADCCFD9FF352AC5F4426C3CD80A6As1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib9722F8D60D6913183143706BFD0F88E3s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib9722F8D60D6913183143706BFD0F88E3s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib029B86C2A9AB1EB874CF9FB82640267Bs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib029B86C2A9AB1EB874CF9FB82640267Bs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib029B86C2A9AB1EB874CF9FB82640267Bs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib029B86C2A9AB1EB874CF9FB82640267Bs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib78693B052738DD00CF82AFF01871EF23s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib78693B052738DD00CF82AFF01871EF23s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib78693B052738DD00CF82AFF01871EF23s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib7E6EF58DB423E1255A83D33383056DD0s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib7E6EF58DB423E1255A83D33383056DD0s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib3C5654C5FD4E35347221A3B5338E72BAs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib3C5654C5FD4E35347221A3B5338E72BAs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib3C5654C5FD4E35347221A3B5338E72BAs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib3C5654C5FD4E35347221A3B5338E72BAs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib12E8F24C8B3397921291DC61E2DCC1F8s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib12E8F24C8B3397921291DC61E2DCC1F8s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib12E8F24C8B3397921291DC61E2DCC1F8s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib5F1748423134387E72BF9045075089BFs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib5F1748423134387E72BF9045075089BFs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib5F1748423134387E72BF9045075089BFs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibD8C847A3CD3F68F07739BEEB2F010678s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibD8C847A3CD3F68F07739BEEB2F010678s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib80D58AA353A4DC577265E8A1378029D1s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib80D58AA353A4DC577265E8A1378029D1s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib80D58AA353A4DC577265E8A1378029D1s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib21205A9B7986384490DF8A52F9232693s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib21205A9B7986384490DF8A52F9232693s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibA771D3F94E906E912527CE46DE3BD18Ds1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibA771D3F94E906E912527CE46DE3BD18Ds1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibA771D3F94E906E912527CE46DE3BD18Ds1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib384307D0C56CC0973B6E8C6078F05854s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib384307D0C56CC0973B6E8C6078F05854s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibBA0212555ADB70A6097625F371AF2428s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibBA0212555ADB70A6097625F371AF2428s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib080C3B7EB9EDA1D057C831DAF441E5B3s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib080C3B7EB9EDA1D057C831DAF441E5B3s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib01F2EF2C5C00B3F6302F6B57B04FBB6Bs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib01F2EF2C5C00B3F6302F6B57B04FBB6Bs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib79B85F034E213A952D83597AFA10DA85s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib79B85F034E213A952D83597AFA10DA85s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib79B85F034E213A952D83597AFA10DA85s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibE657C4C335A6EFD728C6ADC236B08E63s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibE657C4C335A6EFD728C6ADC236B08E63s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibE657C4C335A6EFD728C6ADC236B08E63s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib753F501CE4D40B7B33C3308122F7DDEDs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib753F501CE4D40B7B33C3308122F7DDEDs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib753F501CE4D40B7B33C3308122F7DDEDs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibE1964C523E06E266CF617742C19C0F88s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibE1964C523E06E266CF617742C19C0F88s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibE1964C523E06E266CF617742C19C0F88s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib5A17E99646E1FADCEEFAC39EAE330168s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib5A17E99646E1FADCEEFAC39EAE330168s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib5A17E99646E1FADCEEFAC39EAE330168s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib5A17E99646E1FADCEEFAC39EAE330168s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib0C5E672B0E168D868AB0D2EB5C9A0A1Bs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib0C5E672B0E168D868AB0D2EB5C9A0A1Bs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibC81AC7C73EAB01766412003F4E7233C9s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibC81AC7C73EAB01766412003F4E7233C9s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib966BE1BBD7A208B2D2E1280D385E6553s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib966BE1BBD7A208B2D2E1280D385E6553s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib966BE1BBD7A208B2D2E1280D385E6553s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibAB525F6FBE46A1012F86BABEE9199E81s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibAB525F6FBE46A1012F86BABEE9199E81s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibAB525F6FBE46A1012F86BABEE9199E81s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibA3E9DCD449B9A210DDCE8A88D7041D36s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibA3E9DCD449B9A210DDCE8A88D7041D36s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibA3E9DCD449B9A210DDCE8A88D7041D36s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibA3E9DCD449B9A210DDCE8A88D7041D36s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib0FE7FFEF8E5B79B0FA7FC9358C7117BBs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib0FE7FFEF8E5B79B0FA7FC9358C7117BBs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib0FE7FFEF8E5B79B0FA7FC9358C7117BBs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibFC8F11FC8854260D9E3F5DBF686ECDB2s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibFC8F11FC8854260D9E3F5DBF686ECDB2s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibF8F08B905C2490B1B9B4DD149AADEBD1s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibF8F08B905C2490B1B9B4DD149AADEBD1s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibF8F08B905C2490B1B9B4DD149AADEBD1s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib92D6FC3228BCFED5BA3F0398C30BFC67s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib92D6FC3228BCFED5BA3F0398C30BFC67s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibFE73DC5E60181C612B26F872B0D433BEs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibFE73DC5E60181C612B26F872B0D433BEs1

Computer Physics Communications 302 (2024) 109238A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

[35] K. Schmidmayer, S.H. Bryngelson, T. Colonius, An assessment of multicomponent
flow models and interface capturing schemes for spherical bubble dynamics, J. Com-
put. Phys. 402 (2020) 109080.

[36] M. Rodriguez, E. Johnsen, A high-order accurate five-equations compressible mul-
tiphase approach for viscoelastic fluids and solids with relaxation and elasticity, J.
Comput. Phys. 379 (2019) 70–90.

[37] R. Menikoff, B.J. Plohr, The Riemann problem for fluid flow of real materials, Rev.
Mod. Phys. 61 (1989) 75.

[38] C.-W. Shu, Numerical Methods for Hyperbolic Conservation Laws (AM257), Lecture
Notes, 2006.

[39] E.F. Toro, The HLLC Riemann solver, Shock Waves 29 (2019) 1065–1082.
[40] K.W. Thompson, Time-dependent boundary conditions for hyperbolic systems, II, J.

Comput. Phys. 89 (1990) 439–461.
[41] M. Frigo, S.G. Johnson, FFTW: An Adaptive Software Architecture for the FFT, Pro-

ceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP’98 (Cat. No. 98CH36181), vol. 3, IEEE, 1998, pp. 1381–1384.

[42] M. Vinokur, On one-dimensional stretching functions for finite-difference calcula-
tions, J. Comput. Phys. 50 (1983) 215–234.

[43] W.D. Gropp, E. Lusk, A. Skjellum, E.E. Lusk, Using MPI: Portable Parallel Program-
ming with the Message-Passing Interface, vol. 1, MIT Press, 1999.

[44] R. Thakur, W. Gropp, E. Lusk, Data sieving and collective I/O in ROMIO, in: Pro-
ceedings. Frontiers’ 99. Seventh Symposium on the Frontiers of Massively Parallel
Computation, IEEE, 1999, pp. 182–189.

[45] M. Collette, M. Miller, Silo & HDF5 I/O Scaling Improvements on BG/P Systems,
Technical Report, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United
States), 2010.

[46] H. Wang, S. Potluri, D. Bureddy, C. Rosales, D.K. Panda, GPU-aware MPI on RDMA-
enabled clusters: design, implementation and evaluation, IEEE Trans. Parallel Dis-
trib. Syst. 25 (2013) 2595–2605.

[47] S. Chandrasekaran, G. Juckeland, OpenACC for Programmers: Concepts and Strate-
gies, Addison-Wesley Professional, 2017.

[48] B. Aradi, Fypp: python-powered fortran metaprogramming, https://github .com /
aradi /fypp, 2021, GitHub Repository.

[49] V.G. Vergara Larrea, W. Joubert, M.J. Brim, R.D. Budiardja, D. Maxwell, M. Ezell,
C. Zimmer, S. Boehm, W. Elwasif, S. Oral, et al., Scaling the summit: deploying
the world’s fastest supercomputer, in: High Performance Computing: ISC High Per-
formance 2019 International Workshops, Frankfurt, Germany, June 16–20, 2019,
Springer, 2019, pp. 330–351.

[50] Nsight Compute Documentation, https://docs .nvidia .com /nsight -compute /
NsightCompute /index .html, 2023, User Manual.

[51] D. Yokoyama, B. Schulze, F. Borges, G. Mc Evoy, The survey on ARM processors for
HPC, J. Supercomput. 75 (2019) 7003–7036.

[52] W. Elwasif, S. Bastrakov, S.H. Bryngelson, M. Bussmann, S. Chandrasekaran, F.
Ciorba, M.A. Clark, A. Debus, W. Godoy, N. Hagerty, J. Hammond, D. Hardy, J.A.
Harris, O. Hernandez, B. Joo, S. Keller, P. Kent, H. Le Berre, D. Lebrun-Grandie, E.
MacCarthy, V.G.M. Vergara, B. Messer, R. Miller, S. Oral, J.-G. Piccinali, A. Rad-
hakrishnan, O. Simsek, F. Spiga, K. Steiniger, J. Stephan, J.E. Stone, C. Trott, R.
Widera, J. Young, Early application experiences on a modern GPU-accelerated Arm-
based HPC platform, in: HPC Asia ’23, International Workshop on Arm-Based HPC:
Practice and Experience (IWAHPCE), Singapore, 2023.

[53] M. Tanguay, Computation of bubbly cavitating flow in shock wave lithotripsy, Ph.D.
thesis, California Institute of Technology, 2004.

[54] Y. Liu, P. Zhong, BegoStone-A new stone phantom for shock wave lithotripsy re-
search, J. Acoust. Soc. Am. 112 (2002) 1265–1268.

[55] T.A. Zwaschka, J.S. Ahn, B.W. Cunitz, M.R. Bailey, B. Dunmire, M.D. Sorensen, J.D.
Harper, A.D. Maxwell, Combined burst wave lithotripsy and ultrasonic propulsion
for improved urinary stone fragmentation, J. Endourol. 32 (2018) 344–349.

[56] J.C. Meng, T. Colonius, Numerical simulation of the aerobreakup of a water droplet,
J. Fluid Mech. 835 (2018) 1108–1135.
11

http://refhub.elsevier.com/S0010-4655(24)00161-9/bib6888ED51657575D97C09F6586F3CFFEEs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib6888ED51657575D97C09F6586F3CFFEEs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib6888ED51657575D97C09F6586F3CFFEEs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib47281387199A81C47F26D2AA5C26D872s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib47281387199A81C47F26D2AA5C26D872s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib47281387199A81C47F26D2AA5C26D872s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibD00FF05E93F3F5F6D93DFC0368405C58s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibD00FF05E93F3F5F6D93DFC0368405C58s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibD041AA7F50700353A6968BD1FBE897EDs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibD041AA7F50700353A6968BD1FBE897EDs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibF563E300CC53E506DA7DEAA065B28CACs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibAD35C74BF82E0B8C59A921FE1AE757B7s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibAD35C74BF82E0B8C59A921FE1AE757B7s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib2A11DC794AF39EFA804DE8BA564ADEB8s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib2A11DC794AF39EFA804DE8BA564ADEB8s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib2A11DC794AF39EFA804DE8BA564ADEB8s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib9639FDF8C084637984639F07BAC12F57s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib9639FDF8C084637984639F07BAC12F57s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibB149E3AA336567797445241EE33FCA87s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibB149E3AA336567797445241EE33FCA87s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib589624E3FDB7F32296463E9E8F9FA961s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib589624E3FDB7F32296463E9E8F9FA961s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib589624E3FDB7F32296463E9E8F9FA961s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibB4B16338468AB9BCDDC7813DDE17640As1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibB4B16338468AB9BCDDC7813DDE17640As1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibB4B16338468AB9BCDDC7813DDE17640As1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib202562456F84C7E349BB7A26AE086E9Fs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib202562456F84C7E349BB7A26AE086E9Fs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib202562456F84C7E349BB7A26AE086E9Fs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib3A13CE303B0A8A10F9C5CF1BF1D79DACs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib3A13CE303B0A8A10F9C5CF1BF1D79DACs1
https://github.com/aradi/fypp
https://github.com/aradi/fypp
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib86F66370D057E96B4FD244A72E7FF4FAs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib86F66370D057E96B4FD244A72E7FF4FAs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib86F66370D057E96B4FD244A72E7FF4FAs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib86F66370D057E96B4FD244A72E7FF4FAs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib86F66370D057E96B4FD244A72E7FF4FAs1
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib89131447ED750402C3E875B95BD391C3s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib89131447ED750402C3E875B95BD391C3s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib54C31A2918A8F8FDCE529673419BD4C7s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib54C31A2918A8F8FDCE529673419BD4C7s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib54C31A2918A8F8FDCE529673419BD4C7s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib54C31A2918A8F8FDCE529673419BD4C7s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib54C31A2918A8F8FDCE529673419BD4C7s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib54C31A2918A8F8FDCE529673419BD4C7s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib54C31A2918A8F8FDCE529673419BD4C7s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib54C31A2918A8F8FDCE529673419BD4C7s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib819BE8AA29E6ADBD2CF851E9634A387Bs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib819BE8AA29E6ADBD2CF851E9634A387Bs1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib689FAD02010822BFADAF02514A015851s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib689FAD02010822BFADAF02514A015851s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibDB958E3EBCA480E947E2A337FF07C648s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibDB958E3EBCA480E947E2A337FF07C648s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bibDB958E3EBCA480E947E2A337FF07C648s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib89D7114D58862461FC452B675661F2B0s1
http://refhub.elsevier.com/S0010-4655(24)00161-9/bib89D7114D58862461FC452B675661F2B0s1

	Method for scalable and performant GPU-accelerated simulation of multiphase compressible flow
	1 Introduction1
	2 Computational model
	2.1 5-equation models
	2.2 A 5-equation model with hypoelasticity
	2.3 6-equation model with p-relaxation

	3 Numerical method
	3.1 Finite volume method (FVM)
	3.2 Shock capturing via reconstruction
	3.2.1 Approximate Riemann solver

	3.3 Boundary conditions
	3.4 Time stepping

	4 Implementation strategy
	4.1 Domain decomposition and I/O
	4.2 GPU offloading
	4.3 Optimization
	4.4 Validation

	5 Performance results
	5.1 Scaling
	5.1.1 Weak scaling
	5.1.2 Strong scaling

	5.2 Profiles and I/O
	5.3 Kernel performance
	5.4 Architecture comparisons

	6 Example simulations
	6.1 Cavitating bubble cloud
	6.2 Shock--bubble-cloud--stone interaction
	6.3 Atomizing droplet

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

