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Multiphase compressible flows are often characterized by a broad range of space and time scales, entailing large 
grids and small time steps. Simulations of these flows on CPU-based clusters can thus take several wall-clock 
days. Offloading the compute kernels to GPUs appears attractive but is memory-bound for many finite-volume 
and -difference methods, damping speedups. Even when realized, GPU-based kernels lead to more intrusive 
communication and I/O times owing to lower computation costs. We present a strategy for GPU acceleration 
of multiphase compressible flow solvers that addresses these challenges and obtains large speedups at scale. 
We use OpenACC for directive-based offloading of all compute kernels while maintaining low-level control 
when needed. An established Fortran preprocessor and metaprogramming tool, Fypp, enables otherwise hidden 
compile-time optimizations. This strategy exposes compile-time optimizations and high memory reuse while 
retaining readable, maintainable, and compact code. Remote direct memory access realized via CUDA-aware 
MPI and GPUDirect reduces halo-exchange communication time. We implement this approach in the open-source 
solver MFC [1]. Metaprogramming results in an 8-times speedup of the most expensive kernels compared to a 
statically compiled program, reaching 46% of peak FLOPs on modern NVIDIA GPUs and high arithmetic intensity 
(about 10 FLOPs/byte). In representative simulations, a single NVIDIA A100 GPU is 7-times faster compared to 
an Intel Xeon Cascade Lake (6248) CPU die, or about 300-times faster compared to a single such CPU core. At the 
same time, near-ideal (97%) weak scaling is observed for at least 13824 GPUs on OLCF Summit. A strong scaling 
efficiency of 84% is retained for an 8-times increase in GPU count. Collective I/O, implemented via MPI3, helps 
ensure the negligible contribution of data transfers (< 1% of the wall time for a typical, large simulation). Large 
many-GPU simulations of compressible (solid-)liquid-gas flows demonstrate the practical utility of this strategy.
1. Introduction1

Multiphase compressible flows are ubiquitous, with examples such 
as the atomization of liquid droplets [2], bubble cavitation [3], and 
shock-wave attenuation of nuclear blasts [4]. Collapsing bubble clouds 
in cavitating flows can result in shock waves that lead to large pressures. 
This has applications in a wide variety of engineering problems, such 
as the design of mechanical heart valves [5], burst-wave lithotripsy [6], 
and minimizing blast-induced trauma [7]. These high pressures also 
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cause erosion of industrial equipment in flow around hydrofoils [8], 
pumps [9], and propellers [10]. Simulation of multiphase phenomena 
is thus critical to enable engineering design and minimize equipment 
damage.

Courant–Friedrichs–Lewy (CFL) constraints for compressible flow 
restrict permissible time step sizes. Thus, many time steps are needed to 
simulate the relevant physical phenomena, making the minimization of 
wall time for each time step critical. Since 2004, CPU clock speeds have 
plateaued, ending Dennard scaling. Thus, the compute capabilities of 
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modern supercomputers stem primarily from GPU accelerators. Lever-
aging GPUs is thus essential to extracting meaningful speedups from 
state-of-the-art supercomputers.

Multiphase compressible flow algorithms consist mostly of level 1 
BLAS (vector) stencil operations, so most are memory bound [11]. The 
low arithmetic intensity of these kernels prevents efficient use of the 
GPU’s compute capabilities. Faster GPU kernels can also lead to promi-
nent MPI communication and I/O transfer times. This can exacerbate 
strong scaling behavior for smaller problem sizes with large numbers of 
GPUs. We present strategies that address the concerns above to obtain 
satisfactory performance on accelerators. The portability of our acceler-
ation strategies is ensured by conducting tests on various architectures. 
Large multi-GPU simulations are included to emphasize the benefits of 
our strategies in pertinent applications.

GPU speedups, scaling tests, and example simulations are conducted 
with the open-source solver MFC [1]. Interface capturing methods [12], 
particularly the 5- and 6- equation models [13–15], are used to rep-
resent the multi-component flow. These equations are discretized and 
solved using a shock-capturing finite volume scheme that uses high-
order accurate WENO reconstructions [16,17]. The Riemann problem 
is then solved using an HLLC approximate Riemann solver [18], and 
the solution is evolved with a total-variation-diminishing (TVD) Runge–
Kutta time stepper [19]. The GPU acceleration strategies outlined in this 
work take advantage of the increased arithmetic intensity of high-order 
accurate methods typically used for multicomponent flow simulations.

Large-scale compressible flow simulations have been conducted on 
CPUs for a long time and still gather substantial attention [20]. How-
ever, attempts at optimizing such solvers for GPU acceleration are less 
unified as the GPU hardware landscape evolves. We cite solvers like 
STREAmS (version 1 and 2) [21,22] and ZEFR [23] as just a couple 
of demonstrative examples of these efforts. STREAmS simulates com-
pressible turbulent flow via a flux vector splitting method and achieves 
250-times speedups on a single NVIDIA V100 GPU over an Intel Sky-
lake CPU core. They observe 97% weak scaling efficiency for up to 
1024 V100 GPUs along with 90% strong scaling efficiency for an 8-times 
increase in GPU count. ZEFR employs similar strategies and observes 
similar accelerations, simulating single-phase compressible flows and 
retaining 70% strong scaling efficiency for an 8-times increase in GPU 
count. These solvers do not address the challenges associated with mul-
ticomponent flows, which is part of our focus.

The flexibility associated with the GPU programming model is a 
concern of increasing importance. CUDA offers reliable performance 
on NVIDIA GPUs and has been a GPU-programming mainstay since 
its inception in 2007. However, other vendors like AMD and Intel are 
deploying competitive GPU accelerators in the most capable new super-
computers, like OLCF Frontier, CSC LUMI, and ALCF Aurora [24–26]. 
Vendor-specific programming models like CUDA are insufficient to take 
advantage of the capability these new supercomputers bring. Deploy-
ing performant and vendor-agnostic fluid flow solvers on new com-
puters requires adopting more flexible programming models. Here, we 
use OpenACC [27], a performance-competitive directive-based model 
with established support for NVIDIA GPUs [28] and increasing sup-
port for AMD and Intel hardware [29]. The FluTAS solver [30] also 
adopted OpenACC, solving the incompressible multiphase flow prob-
lem via a finite difference scheme. However, speedups are limited in 
the incompressible flow case due to communication times associated 
with pressure-Poisson solves and Fourier transforms. In their study, 
FluTAS displayed linear weak scaling and a 40% retention in strong 
scaling efficiency for an 8-times increase in GPU count on the MeluXina 
supercomputer [31]. URANOS [32] uses OpenACC similarly for tur-
bulent compressible flows, demonstrating the approach’s efficacy for 
compressible CFD applications. However, the algorithms employed de-
grade performance by 20% when weak scaling up to 300 GPUs, and the 
speedups are limited compared to the ones we present here.

We describe the computational models used to formulate the gov-
2

erning equations in section 2. The numerical method that solves the 
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discrete conservation laws is outlined in section 3. Section 4 describes 
optimal GPU acceleration and MPI communication strategies. Results 
for model validation, GPU speedups, and scaling tests are presented in 
section 5. The benefits of GPU acceleration for large multiphase prob-
lems are illustrated via example simulations in section 6. Section 7
highlights the relevant conclusions from this work.

2. Computational model

We briefly describe the multicomponent models used in GPU ac-
celeration tests. These models are reduced from the non-equilibrium 
Baer–Nunziato model [33].

2.1. 5-equation models

The so-called Kapila 5-equation model [13] is obtained from the 
non-equilibrium Baer–Nunziato model [33] under the assumptions of 
velocity and pressure equilibrium between the phases. The equations 
for 2 components are

𝜕𝛼1𝜌1
𝜕𝑡

+∇ ⋅ (𝛼1𝜌1𝒖) = 0,

𝜕𝛼2𝜌2
𝜕𝑡

+∇ ⋅ (𝛼2𝜌2𝒖) = 0,

𝜕𝜌𝒖

𝜕𝑡
+∇ ⋅ (𝜌𝒖⊗ 𝒖+ 𝑝𝑰) = 0,

𝜕𝜌𝐸

𝜕𝑡
+∇ ⋅ [(𝜌𝐸 + 𝑝)𝒖] = 0,

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅∇𝛼1 =𝐾∇ ⋅ 𝒖,

where 𝜌, 𝒖, 𝑝, and 𝐸 are the mixture density, velocity, pressure, and 
energy, and 𝛼𝑖 are the volume fractions of component 𝑖. The system 
of equations is closed using an equation of state (EOS). Here, we use 
the stiffened gas EOS, which can faithfully model many liquids and 
gases [34]:

𝜌𝐸 = 1
𝛾 − 1

𝑝+
𝛾𝜋∞
𝛾 − 1

, (1)

though other relations can be used as appropriate. For a 2-component 
problem, we have

𝐾 =
𝜌2𝑐

2
2 − 𝜌1𝑐

2
1

𝜌2𝑐
2
2

𝛼2
+
𝜌1𝑐

2
2

𝛼1

, (2)

and 𝐾∇ ⋅ 𝒖 represents the expansion and compression of each phase in 
mixture regions and ensures thermodynamic consistency via the con-
servation of phase entropy. This admits a consistent representation of 
the sound speed in the mixture region, though it can lead to numeri-
cal instabilities due to the non-conservative source term in the volume 
fraction advection equation [16].

The 𝐾∇ ⋅ 𝒖 term can be ignored in cases where mixture compres-
sion effects are unimportant, though it is unclear how to determine this 
a priori. For example, a case where they are known to be important is 
spherical bubble dynamics [35]. If one can ignore this term, the equa-
tions degenerate to the Allaire model [14]. Though the Allaire model is 
conservative, it does not strictly obey the second law of thermodynam-
ics.

2.2. A 5-equation model with hypoelasticity

A hypoelastic material model represents the elastic response of 
solids [36]. The model is obtained by modifying the 5-equation model. 
An elastic shear stress term 𝜏(𝑒)

𝑖𝑗
modifies the Cauchy stress tensor as

(𝑣) (𝑒)

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗 + 𝜏

𝑖𝑗
, (3)
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where 𝝉 (𝑣) is the viscous stresses. An elastic contribution 𝑒(𝑒) contributes 
to the total energy 𝐸 as

𝐸 = 𝑒+ ‖𝒖‖2
2

+ 𝑒(𝑒) where 𝑒(𝑒) =
(𝜏(𝑒)
𝑖𝑗
)2

4𝜌𝐺
. (4)

Additional equations are required to track the elastic stresses. In 3D, 
this is 6 additional equations, one for each stress term 𝜏(𝑒)

𝑖𝑗
where 𝑖, 𝑗 ∈

{1, 2, 3} and 𝝉 (𝑒) symmetric. With elastic contributions and additional 
equations, the hypoelastic 5-equation model for 2 materials is

𝜕𝛼1𝜌1
𝜕𝑡

+∇ ⋅ (𝛼1𝜌1𝒖) = 0,

𝜕𝛼2𝜌2
𝜕𝑡

+∇ ⋅ (𝛼2𝜌2𝒖) = 0,

𝜕𝜌𝒖

𝜕𝑡
+∇ ⋅ (𝜌𝒖⊗ 𝒖+ 𝑝𝑰) + ∇ ⋅ (𝝉 (𝑒) + 𝝉 (𝑣)) = 0,

𝜕𝜌𝐸

𝜕𝑡
+∇ ⋅ [(𝜌𝐸 + 𝑝)𝒖] − ∇ ⋅ [(𝝉 (𝑒) + 𝝉 (𝑣))𝒖] = 0,

𝜕𝛼1
𝜕𝑡

+ 𝒖 ⋅∇𝛼1 =𝐾∇ ⋅ 𝒖,

𝜕𝜏
(𝑒)
𝑖𝑙

𝜕𝑡
+∇ ⋅ (𝜏(𝑒)

𝑖𝑙
𝒖) = 𝑆(𝑒)

𝑖𝑙
,

where

𝑆𝑒
𝑖𝑙
= 𝜌

(
𝜏
(𝑒)
𝑘𝑗

𝜕𝑢𝑖

𝜕𝑥𝑘
+ 𝜏(𝑒)

𝑖𝑘

𝜕𝑢𝑗

𝜕𝑥𝑘
− 𝜏(𝑒)

𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
+ 2𝐺𝜖̇(𝑑)

𝑖𝑗

)
. (5)

2.3. 6-equation model with 𝑝-relaxation

The numerical instabilities introduced by the Kapila model can be 
alleviated via the pressure disequilibrium model of Saurel et al. [15]. 
The system of equations is first evolved without the source terms, fol-
lowed by a pressure relaxation step under the assumption of infinite 
stiffness for the pressure relaxation coefficient as discussed in Schmid-
mayer et al. [35].

3. Numerical method

Herein, we describe the numerical method that evaluates the gov-
erning 5/6-equation models of section 2.

3.1. Finite volume method (FVM)

A finite volume numerical scheme that follows Coralic and Colo-
nius [16] is used to discretize the governing equations

𝜕𝒒

𝜕𝑡
+
𝜕𝑭 𝑥(𝒒)
𝜕𝑥

+
𝜕𝑭 𝑦(𝒒)
𝜕𝑦

+
𝜕𝑭 𝑧(𝒒)
𝜕𝑧

= 𝒔(𝒒) − 𝒉(𝒒)∇ ⋅ 𝒖, (6)

where 𝒒 and 𝑭 represent the conservative variables and fluxes in the 
governing equations. The finite volume method represents the conserva-
tive variables 𝒒𝑖,𝑗,𝑘 centered at the location (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘). The dimensions 
of the cell are

𝐼𝑖,𝑗,𝑘 = [𝑥𝑖−1∕2, 𝑥𝑖+1∕2] × [𝑦𝑗−1∕2, 𝑦𝑗+1∕2] × [𝑧𝑘−1∕2, 𝑧𝑘+1∕2], (7)

with grid spacing

Δ𝑥𝑖 = 𝑥𝑖+1∕2 − 𝑥𝑖−1∕2, Δ𝑦𝑗 = 𝑦𝑗+1∕2 − 𝑦𝑗−1∕2, Δ𝑧𝑘 = 𝑧𝑘+1∕2 − 𝑧𝑘−1∕2.
(8)

The PDE (6) is integrated in space across each cell center as

𝜕𝒒𝑖,𝑗,𝑘

𝜕𝑡
= 1

Δ𝑥𝑖
(𝑭 𝑥

𝑖−1∕2,𝑗,𝑘 − 𝑭 𝑥
𝑖+1∕2,𝑗,𝑘) +

1
Δ𝑦𝑗

(𝑭 𝑦
𝑖,𝑗−1∕2,𝑘 − 𝑭

𝑦

𝑖,𝑗+1∕2,𝑘)

1 𝑧 𝑧

(9)
3

+
Δ𝑧𝑘

(𝑭
𝑖,𝑗,𝑘−1∕2 − 𝑭

𝑖,𝑗,𝑘+1∕2) + 𝒔(𝒒𝑖,𝑗,𝑘) − 𝒉(𝒒𝑖,𝑗,𝑘)(∇ ⋅ 𝒖)𝑖,𝑗,𝑘,
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where 𝒒𝑖,𝑗,𝑘 are the volume averaged conservative variables, and 
𝒔(𝒒𝑖,𝑗,𝑘) and 𝒉(𝒒𝑖,𝑗,𝑘) are the volume averaged source terms. The flux 
term 𝑭 𝑥(𝒒𝑖+1∕2,𝑗,𝑘) is obtained by averaging over the finite volume cell 
face 𝐴𝑖+1∕2,𝑗,𝑘 centered at 

(
𝑥𝑖+1∕2, 𝑦𝑗 , 𝑧𝑘

)
. The other flux terms in (9) are 

obtained using a similar procedure. The divergence term is computed 
as

(∇ ⋅ 𝒖)𝑖,𝑗,𝑘 =
1

Δ𝑥𝑖
(𝑢𝑥
𝑖+1∕2,𝑗,𝑘 − 𝑢

𝑥
𝑖−1∕2,𝑗,𝑘) +

1
Δ𝑦𝑗

(𝑢𝑦
𝑖,𝑗+1∕2,𝑘 − 𝑢

𝑦

𝑖,𝑗−1∕2,𝑘)

+ 1
Δ𝑧𝑘

(𝑢𝑧
𝑖,𝑗,𝑘+1∕2 − 𝑢

𝑧
𝑖,𝑗,𝑘−1∕2),

(10)

where 𝑢𝑥
𝑖+1∕2,𝑗,𝑘 is the 𝑥 direction of the velocity averaged across the 

cell face at grid point 𝐴𝑖+1∕2,𝑗,𝑘.

3.2. Shock capturing via reconstruction

The numerical scheme in section 3.1 requires the reconstruction of 
the fluxes 𝑭 and the velocity 𝒖 at the cell faces. The state variable 𝒒 at 
a cell face 𝐴𝑖+1∕2,𝑗,𝑘 is reconstructed from the face’s left and right sides, 
resulting in a discontinuity. The resulting flux and velocity at the cell 
face are obtained by solving a Riemann problem at the interface [37]:

𝑭 𝑥
𝑖+1∕2,𝑗,𝑘 = 𝑭 𝑥(𝒒L

𝑖+1∕2,𝑗,𝑘,𝒒
R
𝑖+1∕2,𝑗,𝑘)

𝒖𝑥
𝑖+1∕2,𝑗,𝑘 = 𝒖𝑥(𝒒L

𝑖+1∕2,𝑗,𝑘,𝒒
R
𝑖+1∕2,𝑗,𝑘).

The superscripts L and R denote the reconstructed state variable at the 
left and right cell faces. A first-order, total variation diminishing ap-
proximation of the state variables at the interface 𝐴𝑖+1∕2,𝑗,𝑘 follows as

𝒒L
𝑖+1∕2,𝑗,𝑘 = 𝒒𝑖,𝑗,𝑘 and 𝒒R

𝑖+1∕2,𝑗,𝑘 = 𝒒𝑖+1,𝑗,𝑘. (11)

This scheme suppresses spurious oscillations at interfaces, but can 
lose accuracy via their smearing. For this, high-order accurate recon-
structions at the interface help keep interfaces sharp for a given grid 
resolution. Here, we will show results for a fifth-order-accurate WENO 
reconstruction, though the method is also performant for the third-order 
accurate variant.

WENO reconstruction follows from a convex combination of inter-
polating polynomials on candidate stencils. A (2𝑘 − 1)th-order WENO 
reconstructed state variable 𝑓𝑖+1∕2,𝑗,𝑘 is obtained by a weighted sum of 
𝑘 candidate polynomials as

𝑓𝑖+1∕2,𝑗,𝑘 =
𝑘∑
𝑟=0
𝜔𝑟
𝑖+1∕2𝑓

𝑟
𝑖+1∕2,𝑗,𝑘. (12)

The weights 𝜔𝑟 are obtained from ideal weights 𝑤𝑟 using smooth-
ness indicators 𝛽𝑟. Additional implementation details for WENO3 and 
WENO5 are in Shu [38]. High-order WENO reconstructions are not to-
tal variation diminishing (TVD). This makes it susceptible to spurious 
oscillations at material interfaces. To suppress these oscillations, the 
conservative variables 𝒒 are converted to the primitive ones before re-
construction [16].

3.2.1. Approximate Riemann solver

The Riemann problem in section 3.2 is solved using an approximate 
HLLC (Harten-Lax-van Leer contact) Riemann solver [39]. The HLLC 
Riemann solver admits three discontinuities in the solution with wave 
speeds 𝑠L, 𝑠∗, and 𝑠R. The resulting state at the cell interface 𝐴𝑖+1∕2,𝑗,𝑘
is given as

𝒒𝑖+1∕2,𝑗,𝑘 =

⎧⎪⎪⎨⎪
𝒒L
𝑖+1∕2,𝑗,𝑘 0 ≤ 𝑠L

𝒒L∗
𝑖+1∕2,𝑗,𝑘 𝑠L ≤ 0 ≤ 𝑠∗

𝒒R∗
𝑖+1∕2,𝑗,𝑘 𝑠∗ ≤ 0 ≤ 𝑠R

. (13)
⎪⎩𝒒R𝑖+1∕2,𝑗,𝑘 0 ≥ 𝑠R
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The wave speeds 𝑠L and 𝑠R are estimated using the state variables 
𝒒L
𝑖+1∕2,𝑗,𝑘 and 𝒒R

𝑖+1∕2,𝑗,𝑘. In order to calculate the intermediate states 
𝒒L∗
𝑖+1∕2,𝑗,𝑘 and 𝒒R∗

𝑖+1∕2,𝑗,𝑘, continuity of normal velocity (𝑢L∗ = 𝑢R∗ = 𝑢∗) 
and pressure (𝑝L∗ = 𝑝R∗ = 𝑝∗) is imposed across the contact discontinu-
ity with speed 𝑠∗ = 𝑢∗. The flux at the cell interface is then calculated 
as

𝑭 (𝒒𝑖+1∕2,𝑗,𝑘) =

⎧⎪⎪⎨⎪⎪⎩

𝑭 (𝒒L
𝑖+1∕2,𝑗,𝑘) 0 ≤ 𝑠L

𝑭 (𝒒L
𝑖+1∕2,𝑗,𝑘) + 𝑠L(𝒒

L∗
𝑖+1∕2,𝑗,𝑘 − 𝒒L

𝑖+1∕2,𝑗,𝑘) 𝑠L ≤ 0 ≤ 𝑠∗
𝑭 (𝒒R

𝑖+1∕2,𝑗,𝑘) + 𝑠R(𝒒
R∗
𝑖+1∕2,𝑗,𝑘 − 𝒒R

𝑖+1∕2,𝑗,𝑘) 𝑠∗ ≤ 0 ≤ 𝑠R
𝑭 (𝒒R

𝑖+1∕2,𝑗,𝑘) 0 ≥ 𝑠R

.

(14)

3.3. Boundary conditions

Boundary conditions are implemented by allocating buffers at the 
domain edges. Buffer sizes are determined based on the order of WENO 
reconstruction. Boundary conditions for time-dependent hyperbolic sys-
tems require knowledge of solutions exterior to the computational do-
main. We use characteristic-based boundary conditions for this purpose 
[40].

3.4. Time stepping

Once the right-hand side of (9) is determined using spatial recon-
struction coupled with a Riemann solver, the solution is evolved in time 
by discretizing the time derivative. For this purpose, a high-order total 
variation diminishing Runge–Kutta time stepper [19] achieves temporal 
accuracy while suppressing spurious oscillations.

4. Implementation strategy

4.1. Domain decomposition and I/O

Distributed computing techniques are essential to improve perfor-
mance at large scales. This is achieved by decomposing the domain into 
3D blocks across multiple processors. The block dimensions for each 
processor are kept uniform across all dimensions instead of splitting 
across a single dimension (slabs). This is done to minimize the data 
communicated at the processor boundaries.

We utilize a structured mesh with non-uniform spacing to discretize 
the domain. Cartesian and Cylindrical geometries are supported, with 
the axisymmetric option available for cylindrical grids. For 3D cylindri-
cal geometries, fast Fourier transforms maintain finite spacing along the 
circumferential direction near the center. This is implemented with the 
FFTW package on CPUs and cuFFT on NVIDIA GPUs [41]. Grid stretch-
ing through a hyperbolic tangent function is done to locally refine the 
grids near locations of interest [42].

High-order reconstruction at processor boundaries requires knowl-
edge of the state variables outside the local domain. Communication of 
the boundary data among adjacent processors, called the halo exchange, 
is thus required across all dimensions at each time step. Blocking send 
and receive MPI calls transfer data in the halo region [43]. Data in the 
halo regions are packed into 1D buffers for compatibility with the MPI 
subroutines and then unpacked into the requisite data structures. Ideal 
weak and strong scaling is observed on multiple CPU cores [1].

Unsteady compressible flow simulations require I/O data saves at 
a fixed number of time steps to obtain the temporal variation of the 
solution. We use a parallel I/O framework for the file systems, which 
enables collective MPI read and write functions [44]. I/O data dumps 
can thus be performed in a distributed manner across all processors, 
ensuring scalability of the code on modern supercomputers. Silo files 
4

are exported from the data for analysis and visualization [45].
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#:for NORM_DIR, dir in [(1, ’x’), (2, ’y’), (3, ’z’)]

if (norm_dir == ${NORM_DIR}$) then

!$acc parallel loop gang vector collapse (3) private(dvd,

poly, beta, alpha, omega)

do l = is3%beg, is3%end !third coordinate direction

do k = is2%beg, is2%end !second coordinate direction

do j = is1%beg, is1%end !first coordinate direction

!$acc loop seq

do i = 1, sys_size

!$acc loop seq

do q = -2, 1 !compute divided differences

dvd(q) = v_${dir}$(j + q + 1, k, l, i) &

- v_${dir}$(j + q, k, l, i)

end do

!$acc loop seq

do q = 0, 2

poly(q) = v_${dir}$(j, k, l, i) &

+ poly_coef_${dir}$(j, q, 0)*dvd(q+1) &

+ poly_coef_${dir}$(j, q, 1)*dvd(q )

beta(q) = beta_coef_${dir}$(j, q,

0)*dvd(1-q)*dvd(1-q) &

+ beta_coef_${dir}$(j, q,

1)*dvd(1-q)*dvd( -q) &

+ beta_coef_${dir}$(j, q, 2)*dvd(

-q)*dvd( -q)

end do

alpha = d_${dir}$(:, j)/(beta**2)

omega = alpha/sum(alpha)

vL_${dir}$(j, k, l, i) = sum(omega*poly)

end do

end do

end do

end do

end if

#:endfor

Listing 1: A Fortran90+Fypp code snippet of the WENO5 reconstruction 
kernel.

4.2. GPU offloading

All computation within a time step is offloaded to GPUs via Ope-
nACC [27]. After applying the initial condition in the pre-processing 
step, the state variables are copied to the GPUs. The state variables are 
transferred back to the CPUs only during I/O data saves, typically occur-
ring once every one thousand steps for large problems. Directive-based 
offloading in OpenACC only requires the specification of the location of 
independent loops and the level of parallelization. This allows the com-
piler to decide the optimum kernel parameters for maximum speedup. 
Another advantage of directive-based offloading is maintaining a com-
mon codebase for the CPU and GPU versions and enabling accelerators 
via a compiler flag. cuTENSOR and cuFFT libraries are used for opti-
mized tensor reshapes and Fourier transforms on GPUs.

Our OpenACC implementation uses well-established directives, mak-
ing it portable. The code is compatible with NVHPC, GNU, and Cray 
(CCE) compilers on NVIDIA GPUs and AMD GPU support for CCE and 
GNU. Here, we conduct simulations on NVIDIA V100 (OLCF Summit) 
and A100 GPUs (OLCF Wombat) using the NVHPC compiler. CPU sim-
ulations are also supported on various architectures using NVHPC and 
GCC compilers with appropriate optimization flags. We test CPU simu-
lations on Intel Xeon Cascade Lake CPUs (PSC’s Bridges2), IBM Power9 
CPUs (OLCF Summit), and Arm CPUs (OLCF Wombat).

A code snippet example of an OpenACC kernel used in MFC is given 
in Listing 1. The kernel uses 5th-order-accurate WENO to reconstruct 
the state variables at the cell faces. WENO reconstruction constitutes 
about 40% of the total time step on GPUs, making it the most expensive 
OpenACC kernel. Various optimization techniques used in Listing 1 to 
improve kernel performance are detailed in section 4.3.

High-order WENO reconstruction of state variables entails larger 
stencils. Larger stencils are commensurate with larger halo regions at 
the processor boundaries and longer communication times. Halo ex-

change times on GPUs can be significant owing to faster kernel times 
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over CPUs. Moreover, the proportion of data on the processor bound-
aries increases with decreasing problem size. Minimizing MPI communi-
cation time is thus essential to retain GPU speedups for smaller problem 
sizes. For this purpose, we use CUDA-aware MPI and GPUDirect RDMA 
to accelerate communication by using fast GPU interconnects [46]. We 
observe 4-times performance improvement for halo exchanges using 
CUDA-aware MPI over conventional MPI communication with Spec-
trum MPI 10.4 on OLCF Summit.

4.3. Optimization

OpenACC kernels use gangs, workers, and vectors to distribute the 
workload, which maps to blocks, warps, and vectors in CUDA notation. 
The parallel loop constructs in OpenACC split the loop iterations 
across gangs by default. This usually leads to each block using a single 
OpenACC vector, resulting in a huge waste of resources. The parallel 
loop construct in Listing 1 is thus augmented with a gang vector
clause that enables the splitting of the loop iterations across multiple 
gangs of fixed vector length [47]. The compiler chooses the optimum 
number of gangs and vectors for efficient resource allocation [47]. Fur-
thermore, the three loops across multiple dimensions in Listing 1 are 
combined into a single loop using the collapse(3) clause. This al-
lows the compiler to choose optimal gang and vector sizes for a specific 
architecture based on the total problem size, thus eliminating the effect 
of any skewness in the grid dimensions. The fourth loop in Listing 1 ben-
efits from serialization due to its smaller loop bounds, with sys_size
typically between 5 and 9 for multiphase problems.

Compressible flow algorithms are primarily vector operations, typ-
ically leading to low arithmetic intensity. Potential for improved GPU 
performance was observed in the computationally intensive WENO re-
construction kernel, outlined in Listing 1, through a high degree of 
memory reuse. Flattened multidimensional arrays are preferred over 
user-defined data types, allowing for aggressive compiler optimizations 
in GPU kernels. A 6-times performance improvement was observed us-
ing multidimensional arrays for the kernel in Listing 1 over user-defined 
data types for a 3D problem with 1M (106) grid points.

Memory coalescence is needed to saturate the GPU’s global memory 
bandwidth. This can be achieved by ensuring that successive threads 
in a parallelized loop access consecutive memory locations. Previous 
serialized implementations benefited from switching the inner and 
outer loops in Listing 1 corresponding to iteration variables j and k. 
This allowed for reusability of the coefficient variables (poly_coef,
beta_coef) across the iterations of the inner loop. However, reorder-
ing the two loops, as in Listing 1, ensured thread coalescence across 
inner iterations and proved beneficial for GPU implementation.

Dimensional splitting in the finite volume method requires inde-
pendent reconstructions and flux additions across all dimensions. This 
allows for temporarily reshaping the state variables to achieve coa-
lesced memory access. The additional cost of reshaping state variables 
is mitigated by the high degree of reuse of the reshaped variables in the 
computationally intensive GPU kernels. The state variables (v, vL) in 
Listing 1 are reshaped so that the fastest-changing index j matches the 
direction of reconstruction. Reshaping the state variables for the ker-
nel in Listing 1 results in a 10-times speedup for a 3D problem with 
1M grid points per NVIDIA V100 GPU. The cuTENSOR library reshapes 
these arrays on NVIDIA GPUs, though we observe similar performance 
when reshaping manually via array loops.

Metaprogramming techniques, in this case, enabled by the Fypp pre-
processor [48], further improves GPU kernel performance. It allows for 
user inputs to be passed as compile-time constants, which are used to al-
locate fixed-size thread-local arrays in GPUs. Their availability as fixed-
size arrays allows the compiler to introduce additional optimizations in 
the kernel and thus primarily (fast) register memory accesses. Fixed pa-
rameters are also used to eliminate large conditional blocks in kernels, 
leading to improved times via judicious use of available GPU regis-
5

ters. Kernel duplication across multiple dimensions in Listing 1 is also 
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eliminated through the use of Fypp macros (#:for NORM_DIR). This 
strategy results in 8- and 2-times speedups of the two most expensive 
kernels associated with WENO and the Riemann solver, respectively. 
OpenACC does not automatically inline serial subroutines within GPU 
kernels. This can cause a 10-times slowdown of kernels with sequen-
tial subroutine calls. Fypp enables manual inlining of these subroutines 
to retain compiler optimizations and speedups. Fypp is only a metapro-
gramming tool, so it does not generate any code that a programmer 
could not write themselves. However, it does write code a programmer 
is unlikely to write themselves out of the sheer work and repeated opti-
mizations required. In the case of MFC, fypp also enables a reduced line 
count by about a factor of 10.

The same core kernel code is used for CPUs and GPUs. After op-
timization, we found a minor speedup in the CPU simulations before 
GPU porting. Thus, no meaningful performance difference is observed 
on CPUs by optimizing for GPUs via OpenACC offloading.

4.4. Validation

MFC has been validated on test cases via comparisons to experi-
mental results for various physical problems such as shock-bubble in-
teraction, shock-droplet, spherical bubble collapse, and Taylor–Green 
vortices [1]. The results are verified to be high-order accurate by mon-
itoring error convergence. Solutions are also free of any spurious oscil-
lations at material interfaces.

5. Performance results

The 5-equation model in section 2.1 is used to obtain performance 
metrics for both CPUs and GPUs. Similar GPU speedups and scaling are 
observed for the 5-equation hypoelastic model in section 2.2 and the 
6-equation model in section 2.3.

5.1. Scaling

The scalability of the code is probed by examining wall times for 
a 3D 2-component problem with air and water on OLCF Summit. The 
hardware details of Summit are available in Vergara Larrea et al. [49]. 
In brief, Summit is an IBM system of AC922 POWER nodes. It con-
tains 4600 compute nodes, each with 2 IBM POWER9 processors and 
6 NVIDIA V100 GPUs. Each POWER9 chip is connected via NVLINK 
with a bandwidth of 25 GB/s. Each node has 96 GB of HBM2 GPU 
memory. The wall times are averaged across 10 time steps during a 
simulation, which is sufficient for variability to be sufficiently small 
that it is visually indistinguishable on subsequent plots. The processor 
with maximum wall time is used to examine results.

5.1.1. Weak scaling

The problem size per GPU or CPU is 1M grid points in 3D with 1 
MPI rank per processor. Here, the problem size increases proportion-
ately to the number of processors to test weak scaling. Fig. 1 shows 
the weak scaling performance using NVIDIA V100 GPUs and POWER9 
CPUs on OLCF Summit. The wall times are normalized using the base 
case with 216 GPUs and 112 CPU cores, respectively. A near-ideal effi-
ciency of 97% is observed for at least 13824 GPUs. Efficiency is within 
1% of ideal performance for at least 14336 CPU cores. A higher weak 
scaling efficiency on CPUs over GPUs can be attributed to the negligible 
contribution of halo exchanges.

5.1.2. Strong scaling

We use the same 3D 2-component problem as the weak scaling test 
on Summit to observe strong scaling performance. This is achieved by 
fixing the total problem size and increasing the number of processors. 
The base case uses 8 GPUs or CPU cores, with 1 MPI rank per core. For 
GPU cases, this corresponds to one core binding to each GPU. We use 

problem sizes of 64 and 16 M grid points with the base case using 8 and 
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Fig. 1. Weak scaling for a 3D 2-phase problem on (a) NVIDIA V100 GPUs and (b) POWER9 CPUs.
Fig. 2. Strong scaling results on POWER9 CPUs for a 3D 2-component problem 
with sized as labeled.

Table 1

Strong scaling simulation times for the 64M grid point case of Fig. 3 (b).

GPUs CUMPI MPI

Actual [s] Ideal [s] Actual [s] Ideal [s]

8 0.273 0.273 0.341 0.341
16 0.146 0.137 0.199 0.171
32 0.0710 0.0683 0.101 0.0853
64 0.0408 0.0341 0.0542 0.0426
128 0.0286 0.0171 0.0417 0.0213

2 M grid points per GPU or CPU, respectively. For simulations with GPU 
quantities that are not multiple of 6, the extra GPUs are spilled onto the 
next node.

Fig. 2 shows strong scaling performance on POWER9 CPUs on OLCF 
Summit. We observe ideal scaling varying from one to six nodes. This 
indicates that communication is negligible for CPU simulations and 
problems of appreciable size, which is discussed further in section 5.2. 
This contrasts against GPU simulations, for which computational time 
is markedly shorter but network communication times are not. Fig. 3
shows strong scaling performance using NVIDIA V100 GPUs with and 
without GPU-aware MPI on OLCF Summit. An increase in processor 
count leads to decreased problem size per GPU. Deviation from ideal 
performance is expected due to the increasing share of MPI communi-
cation.

CUDA-aware MPI and the GPUDirect RDMA use fast GPU inter-
connects to achieve up to 4-times faster halo exchanges. This can be 
observed for the largest problem size (64M) in Fig. 3 and in more detail 
in Table 1, retaining 84% of ideal performance for a factor of 8 increase 
in processor count. A larger deviation from ideal performance is ob-
served without CUDA-aware MPI. The problem size is chosen to be close 
to the memory limit of an NVIDIA V100-16 GB SMX2 GPU. However, 
deviations from ideal behavior are observed for smaller problem sizes 
(16M) at larger numbers of GPUs (64 and 128). This can be attributed 
6

to MPI communication dominating the simulation time (> 50% of wall 
Table 2

Percentage contributions of the most expensive subroutines per time step. The 
GPUs are NVIDIA V100s, and the CPUs are IBM POWER9s. The problem size 
per CPU or GPU as labeled (1M and 8M).

Subroutine GPU(1M)% GPU(8M)% CPU(1M)% CPU(8M)%

Reconstruction 37.0 43.3 72.9 71.7
Riemann Solve 24.7 33.3 16.4 18.7
Communication 17.6 5.81 3.64 3.83
Other 20.7 17.6 7.06 5.77

time) as the compute required per GPU diminishes more quickly but 
the communication does not. Of course, one expects a full plateau and 
nearly 100% of the time spent doing communication for a sufficiently 
large number of GPUs.

5.2. Profiles and I/O

We monitor the contribution of various subroutines in the code to 
the total simulation time for GPUs and CPUs. This is done by measuring 
the wall times of the most expensive routines for a single time step. The 
wall times are averaged across 10-time steps, and the processor with 
maximum wall time is used for runs with multiple processors. Table 2
shows the percentage contribution of most expensive subroutines for a 
3D 2-component problem using 4 NVIDIA V100 GPUs on OLCF Summit. 
CPU simulations use GNU compilers with -Ofast optimization flag. We 
test a relatively small problem with 4M grid points (1M per processor 
or accelerator) and a larger problem with 32M grid points (8M per 
processor or accelerator). The larger problem size is chosen to be close 
to the hardware limit of an NVIDIA V100-16 GB SMX2 GPU (16 GB).

WENO reconstruction is observed to be the most expensive kernel in 
MFC, taking around 40% and 70% of the time step for GPUs and CPUs. 
A relatively smaller contribution of the WENO kernel on GPUs indicates 
large speedups for this kernel. MPI communication time on GPUs has 
a decreasing contribution to the overall simulation time with increas-
ing problem size. The contribution of MPI communication on CPUs is 
relatively insignificant (≈ 1%) and invariant to problem size. It should 
be noted that I/O data saves, while insignificant on CPUs, require the 
equivalent of about 10 time step units on GPUs. However, CFL-restricted 
time step sizes mean data saves are typically conducted once every 1000 
steps. Hence, simulation times remain largely unaffected by I/O trans-
fers on all architectures.

5.3. Kernel performance

The analysis of system profiles in section 5.2 indicates that WENO 
and Riemann solver kernels account for over 75% of the simulation time 
on GPUs for large problem sizes (8 M per GPU). Individual speedups of 
the most expensive subroutines using GPUs over CPUs for the larger 
simulation in section 5.2 are given in Table 3. Large speedups (480-

times) for the most expensive WENO kernel on GPUs result from coa-
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Fig. 3. Strong scaling analysis on NVIDIA V100 GPUs with and without CUDA-aware MPI (CUMPI) for a 3D 2-component problem with problem sizes (number of 
grid points) as labeled.
Table 3

Speedups (times faster) for the most expen-
sive subroutines and the overall time step us-
ing V100 GPUs over a POWER9 CPU for a 3D 
2-component problem with 8M grid points 
on OLCF Summit. This problem uses 4 GPUs 
and 4 CPU cores.

Subroutine Speedup

Reconstruction 486
Riemann Solver 189
Communication 125

Total 305

Fig. 4. Roofline analysis for the two most expensive kernels, WENO and Rie-
mann solvers. The kernels and rooflines are associated with double precision 
(DP) computation and fused multiply-add (FMA) operations.

lesced memory access and a high degree of reuse. The Riemann solvers 
kernel achieves lower speedups on GPUs due to a large number of 
thread-local variables and a low degree of memory reuse. Speedups 
in the MPI subroutines are observed due to faster buffer packing and 
unpacking on GPUs and CUDA-aware MPI. A 300-times speedup is ob-
served for the time step using a single V100 GPU over a POWER9 CPU 
core. On a single Summit compute node, this translates to a 40-times 
speedup using the GPUs over only the CPUs.

A roofline analysis of the two most expensive kernels, WENO re-
construction and Riemann solvers, on NVIDIA A100 and V100 GPUs 
and double precision rooflines using NVIDIA Nsight Compute [50] are 
shown in Fig. 4. A high arithmetic intensity of 10 FLOP/byte and over 
40% of the peak double precision FLOPs are observed for the WENO 
kernel on both GPUs. The kernel achieves a bandwidth of 305 GB∕s on 
the V100 GPU, with the peak bandwidth being 900GB∕s. Kernel opti-
mizations and high memory reuse are largely responsible for efficiently 
7

utilizing compute resources. In contrast, the Riemann solvers have a 
Table 4

Comparison of wall times per time step on various 
architectures. The Intel Xeon Gold chips are the Cas-
cade Lake architecture, and Ampere indicates the Am-
pere Altra Q80-30 chip. The A/V100 GPU simulations 
use the NVHPC v22.1 compiler, and the CPUs use 
GNU v11.1 (the fastest among tested compilers).

# Cores Time [s] Slowdown

A100 — 0.28 Ref.
V100 — 0.50 1.7
Xeon 40 2.1 7.3
Ampere 40 2.7 9.2
Power9 42 3.5 12

lower arithmetic intensity (2 FLOP/byte) and only achieve about 10% 
of the peak double precision FLOPs on both GPUs. This can be attributed 
to low memory reuse and an abundance of conditional statements in this 
kernel. However, efforts to alleviate performance issues by employing 
single-precision arithmetic in the Riemann solvers kernel are currently 
being pursued.

5.4. Architecture comparisons

The portability of our acceleration strategies is verified by testing 
performance on various hardware architectures. We tested performance 
on several CPUs: Ampere Altra Q80-30 (located on OLCF Wombat), In-
tel Xeon Gold Cascade Lake (SKU 6248 m, PSC Bridges2), and IBM 
Power9 (OLCF Summit). NVHPC and GCC11 compilers were tested with
-fast and -Ofast compiler optimization flags, respectively. GPU per-
formance was analyzed for the NVIDIA V100 (OLCF Summit) and A100 
(OLCF Wombat) using the NVHPC 22.1 compiler with the -Ofast flag. 
All computations are double precision. A 3D two-component problem 
with 16 M grid points on 2 MPI ranks was used for testing. The wall 
time was averaged over 10 time steps.

Table 4 shows average wall times and relative performance met-
rics for the different hardware. The “Time” column has little absolute 
meaning, with the relative performance being the most meaningful (also 
shown in the last column). In Table 4, the performance of a single GPU 
is compared to that of the CPU chip, with the CPU wall times normal-
ized by the number of CPU cores per chip.

The results show that the A100 GPU is 1.72-times faster than the 
V100 on OLCF Summit, faster than even the peak double-precision per-
formance would anticipate between the two cards (a factor of 1.24). 
This can be attributed to higher memory bandwidth (1.7-times) and 
faster GPU interconnects (2-times) on an A100 over a V100. A sin-
gle A100 also gives a 7.3-times speedup over the Intel Xeon Cascade 
Lake, the fastest CPU chip. Increasing the number of GPU ranks has a 

negligible effect (≈ 15%) on performance due to the relatively small 
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Fig. 5. Cost breakdown of different MFC subroutines on various architectures 
for a 3D 2-component problem with 16 M grid points. Cases V100 and A100 
have all compute kernels on the respective GPUs, so the associated CPU archi-
tecture is not meaningful. Numbers above the bars indicate the absolute wall 
time in seconds, also shown in Table 4, which are the fastest times amongst 
tested compilers (NVHPC and GCC). The CPU cases use GCC v11.1 compilers 
except for the A64FX case, which used NVHPC 22.1 compilers. The GPU cases 
use the NVHPC 22.1 compiler.

contribution of the MPI subroutine section 5.3. The GNU11 compilers 
give shorter wall times than the NVHPC compilers on all CPU archi-
tectures. The Ampere Altra CPUs are 1.4-times faster when compared 
to the POWER9s and 1.2-times slower than the Intel Xeons. The Arm-
based CPUs (Ampere Altra) are more energy- and cost-efficient than 
their x86 counterparts (Intel Xeon) under their reduced instruction set 
(RISC). While performance on x86 CPUs is superior, future trends indi-
cate a growing popularity for Arm chips in high-performance computing 
applications [51]. The performance for different Arm chips, including 
the TX2 and A64FX, and their compilers are discussed for various ap-
plications, including MFC, in Elwasif et al. [52].

Fig. 5 shows a timestep normalized breakdown of the duration of 
the most expensive MFC routines. The two left columns indicate ker-
nel times on GPUs; the rest are CPU-only. All computation is offloaded 
to accelerators, with CPUs being used only for I/O operations and halo 
exchanges on systems with no support for GPU-aware MPI. MPI commu-
nication constitutes a meaningful proportion of the total time on GPUs 
while being negligible on CPUs. This can be attributed to much larger 
speedups in computation on GPUs over CPUs as compared to MPI com-
munication. The relative proportion of various routines remains nearly 
constant across CPU and GPU architectures. In addition to the architec-
tures of Table 4, Fig. 5 includes results for older Arm architectures like 
the ThunderX2 (TX2) and Fujitsu A64FX. These processors are mod-
estly slower than more modern x86 or Arm chips, though the profiles 
are qualitatively similar to the other CPUs.

6. Example simulations

We demonstrate the capability and flexibility of the method de-
scribed via a large multiphase simulation of different test configura-
tions. GPU speedups are consistent with those of section 5.

6.1. Cavitating bubble cloud

The first example case simulates the collapse of 50 air bubbles in 
water at ambient pressure (1 atm) near a wall when subject to a 10 atm
pressure wave. The density of the fluids follows from those at standard 
temperature and pressure. The stiffened-gas equation of state represents 
both fluids [34]. This example simulation uses 216 M grid points and 60
8

grid points across each initial bubble diameter. We simulate for 3 × 105
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time steps, corresponding to a dimensionless time 𝜏 ≡ 𝑡𝑐∕𝑅0 = 42 for 
air sound speed 𝑐 and equilibrium bubble radii 𝑅0.

Fig. 6 shows the wall pressure contours and streamlines of the col-
lapsing bubble cloud and the isocontours of air volume fraction. Here, 
we use 216 GPUs (36 nodes) on Summit, or 1 M points per GPU, which 
amounts to 3 hours of wall-time for this simulation. Using POWER9 
CPUs on the same compute nodes would require more than 2 days for 
the same problem. We save the simulation state to disk every 1000 time 
steps. Each data export requires about ten steps worth of wall time, so 
this cost has a negligible impact on performance.

6.2. Shock–bubble-cloud–stone interaction

The approach of this manuscript can also simulate the shock-induced 
collapse of air bubbles near a model kidney stone. This, in part, demon-
strates the efficiency and capabilities of the method. The configura-
tion of interest is similar in spirit to shock- and burst-wave lithotripsy 
[6,53].

Here, we consider a dispersion of 17 air bubbles initially near a 
model stone and submerged in water. The impinging shock has a Mach 
number 𝑀𝑠 = 7.92. The BegoStone material represents the stone [54], 
a kidney stone phantom in lithotripsy research trials [55]. BegoS-
tone has a density of 𝜌 = 1995 kg∕m3 and longitudinal and transverse 
wavespeeds 𝑐𝐿 = 4159m∕s and 𝑐𝑇 = 2319m∕s.

The hypoelastic model described in section 2.2 represents elastic 
stresses in the stone and carries out this simulation. The simulation do-
main is 2.67𝐷 in the mean flow direction and 1𝐷 in the transverse 
and spanwise directions, where 𝐷 is the stone’s diameter. A structured 
1600 × 600 × 600 Cartesian grid (576M grid points) discretizes the do-
main. This simulation was conducted on 576 GPUs (96 nodes) on OLCF 
Summit for 25 ×103 time steps, corresponding to a wall-time of 30 min-
utes.

Fig. 7 shows maximum principal stresses (defined in the usual way) 
in the stone at 𝜏 ≡ 𝑡𝑐∕𝑅0 = 2.03 for air sound speed 𝑐 and initial bubble 
radius 𝑅0. These stresses follow from the shock, and the later bubble 
collapses. As expected, we observe larger stresses near the center of the 
bubble cloud and stone cross-section.

6.3. Atomizing droplet

The third example simulation shows the atomization of a 3D water 
droplet in air impinged by a Mach 1.46 shock wave. The domain is 20 
𝐷 in the mean flow direction and 10 𝐷 in the transverse and spanwise 
directions, where 𝐷 is the initial droplet diameter. A 2000 ×1000 ×1000
Cartesian grid (2B grid points) discretizes the domain. Stretching locally 
refines and stretches the grid near the droplet as

𝑥stretch = 𝑥+
𝑥

𝑎𝑥

[
log

(
cosh

(
𝑎𝑥(𝑥− 𝑥𝑎)

𝐿

))
+

log
(
cosh

(
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𝐿

))

− 2 log
(
cosh

(
𝑎𝑥(𝑥𝑏 − 𝑥𝑎)

2𝐿

))] (15)

where 𝑎𝑥 is the stretch magnitude, 𝐿 is the domain length, and 𝑥𝑎 and 
𝑥𝑏 control where stretching occurs. The droplet is centered at the ori-
gin, with 𝑥𝑎 = −1.2𝐷 and 𝑥𝑏 = 1.2𝐷 and stretching factor 𝑎𝑥 = 4 across 
all coordinate directions. This flow is simulated for 2 × 105 time steps 
with a dimensionless timestep Δ𝜏 = 9.6 ×10−6, and the simulation state 
is saved every 1000 time steps. The simulation is conducted on OLCF 
Summit using 960 GPUs (160 nodes), which amounts to 4 hours of wall-
time.

Fig. 8 shows the vorticity (𝝎) magnitude isosurface ‖𝝎‖ = 105 at 
dimensionless time 𝜏 = 1.43, where 𝜏 ≡ 𝑡𝑢𝑔∕𝐷

√
𝜌𝑔∕𝜌𝑙 , for shock ve-

locity 𝑢𝑔 and post-shock gas and liquid densities 𝜌𝑔 and 𝜌𝑙 . The shock 

wave leads to two counter-rotating vorticity streams in the wake of the 
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Fig. 6. Illustrative MFC simulation of a collapsing bubble cloud near a wall. Results show the bubbles as contours of 𝛼1 = 0.5 and pressures and streamlines as 
labeled. In (a), red colors are larger pressures, and blue colors are lower. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

Fig. 7. Illustrative simulation of a kidney stone near a collapsing bubble cloud. Reds indicate higher stresses, and blues indicate lower stresses. The bubble and stone 
isosurfaces are shown for volume fraction 𝛼 = 0.5.

Fig. 8. Vorticity isocontours ‖𝝎‖ = 105 around a shedding water droplet.
droplet, forming a recirculation region as shown in Fig. 8. This simula-
tion agrees with previous studies of droplet aerobreakup [56], though 
it requires shorter wall times and makes judicious use of the latest ac-
celerators.

7. Conclusions

We present a GPU-accelerated multiphase compressible flow solver, 
MFC, capable of simulating various physical phenomena. Optimization 
techniques are used to facilitate efficient memory use in computation-
9

ally expensive kernels. This enables higher arithmetic intensity over 
typical CFD algorithms for compressible flow. Further performance im-
provements are observed through metaprogramming techniques via 
Fypp. Portability of the implementation is ensured through directive-
based offloading via OpenACC, and performance is tested on NVIDIA 
GPUs as well as Intel Xeon, IBM POWER9, and ARM CPUs. A 40-times 
speedup is observed on a single Summit node using NVIDIA V100 GPUs 
over POWER9 CPUs.

Multi-GPU performance is examined by conducting weak and strong 
scaling tests. Near ideal weak scaling (with 3%) is observed for up to 
13824 GPUs on Summit. CUDA-aware MPI coupled with the GPUDi-

rect RDMA further reduces communication overhead on GPUs, reducing 



A. Radhakrishnan, H. Le Berre, B. Wilfong et al.

simulation time for all cases tested. Level-3 MPI parallel I/O ensures 
that the cost of data dumps is negligible for large simulations. Scaling 
and speedup results show significant improvement over previous mul-
tiphase implementations [30] and are comparable to previous single-
phase implementations [21,23].

The ability to conduct large multiphase simulations was tested by 
conducting large multi-GPU simulations across many compute nodes. 
The example simulations performed (105) time steps within a few 
hours on NVIDIA GPUs instead of a few days on current x86 and ARM 
multicore CPU processors. This strategy is poised to enable the efficient 
use of existing and upcoming exascale systems like OLCF Frontier and 
LLNL El Capitan for state-of-the-art compressible multiphase flow sim-
ulations.
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