
Computer Physics Communications 296 (2024) 109052

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

RoseNNa: A performant, portable library for neural network inference with 

application to computational fluid dynamics ✩,✩✩

Ajay Bati, Spencer H. Bryngelson ∗

School of Computational Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Computational fluid dynamics

Neural Networks

Inference

Partial differential equation solvers

The rise of neural network-based machine learning ushered in high-level libraries, including TensorFlow and 
PyTorch, to support their functionality. Computational fluid dynamics (CFD) researchers have benefited from this 
trend and produced powerful neural networks that promise shorter simulation times. For example, multilayer 
perceptrons (MLPs) and Long Short Term Memory (LSTM) recurrent-based (RNN) architectures can represent 
sub-grid physical effects, like turbulence. Implementing neural networks in CFD solvers is challenging because 
the programming languages used for machine learning and CFD are mostly non-overlapping, We present the 
roseNNa library, which bridges the gap between neural network inference and CFD. RoseNNa is a non-invasive, 
lightweight (1000 lines), and performant tool for neural network inference, with focus on the smaller networks 
used to augment PDE solvers, like those of CFD, which are typically written in C/C++ or Fortran. RoseNNa 
accomplishes this by automatically converting trained models from typical neural network training packages 
into a high-performance Fortran library with C and Fortran APIs. This reduces the effort needed to access trained 
neural networks and maintains performance in the PDE solvers that CFD researchers build and rely upon. Results 
show that RoseNNa reliably outperforms PyTorch (Python) and libtorch (C++) on MLPs and LSTM RNNs with 
less than 100 hidden layers and 100 neurons per layer, even after removing the overhead cost of API calls. 
Speedups range from a factor of about 10 and 2 faster than these established libraries for the smaller and larger 
ends of the neural network size ranges tested.

Program summary

Program Title: RoseNNa

CPC Library link to program files: https://doi .org /10 .17632 /srbrfx8k74 .1
Developer’s repository link: https://github .com /comp -physics /roseNNa

Licensing provisions: MIT

Programming language: Fortran90 and Python

Nature of problem: Neural network applications in computational fluid dynamics exhibit high promise. However, 
they are often not deployed on HPC systems due to limited deep-learning support in Fortran or C/C++. Previous 
attempts to solve this issue rely on significant manual intervention. This leaves researchers with no practical 
solution for conveniently porting their trained models for use in performant HPC codebases.

Solution method: RoseNNa converts trained neural networks from popular machine learning frameworks to 
Fortran/C code for inference, requiring minimal manual intervention. Metaprogramming enables automatic code 
creation, and ONNX ensures flexible machine learning library support.
✩ The review of this paper was arranged by Prof. W. Jong.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .sciencedirect .
com /science /journal /00104655).

* Corresponding author.
Available online 14 December 2023
0010-4655/© 2023 Elsevier B.V. All rights reserved.

E-mail address: shb@gatech.edu (S.H. Bryngelson).

https://doi.org/10.1016/j.cpc.2023.109052

Received 30 July 2023; Received in revised form 1 December 2023; Accepted 6 Dec
ember 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://doi.org/10.17632/srbrfx8k74.1
https://github.com/comp-physics/roseNNa
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:shb@gatech.edu
https://doi.org/10.1016/j.cpc.2023.109052
https://doi.org/10.1016/j.cpc.2023.109052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.109052&domain=pdf


Computer Physics Communications 296 (2024) 109052A. Bati and S.H. Bryngelson

Fig. 1. RoseNNa (c) is a neural network converter that integrates into the inference process. It encodes the ONNX-converted neural network and transforms it into 
performant Fortran code with C and Fortran APIs. The user provides the components outside of (c).
1. Introduction

Deep learning has received considerable attention due to the avail-

ability of data and increasing computational power. Computational 
fluid dynamics (CFD) practitioners have been developing neural-

network-based models to enhance traditional closures models and 
numerical methods. For example, Fukami et al. [1] implemented a con-

volutional autoencoder and multilayer perceptron (MLP) to speedup 
turbulence simulations, and Zhu et al. [2] showed how multiple arti-

ficial neural networks (ANNs) can model turbulence at high Reynolds 
numbers. Laubscher and Rousseau [3] used variational autoencoders 
and MLPs to predict cell-by-cell distributions of temperature, veloc-

ity, and species mass fractions for turbulent jet diffusion flames. Pirnia 
et al. [4] used an ANN to predict drag force on smaller particles 
and their results showed promise in improving drag force weighting 
in the coarse-grid method. Lastly, Baymani et al. [5] evaluated the 
capabilities of their feed-forward neural network by examining the elec-

troosmotic flow through a two-dimensional microchannel. They found 
their MLP model was a fast solution to the Navier-Stokes equations. Of 
course, there are many other such examples. These trained models show 
promising results but are often not integrated into high-performance 
solvers to deploy the model at scale. Since the neural networks are typ-

ically constructed via Python-based learning libraries like PyTorch, it is 
unclear how to most efficiently introduce them into CFD and other PDE 
solvers written in low-level languages like C and Fortran.

Researchers have proposed solutions to bridge the gap between the 
Python and HPC domains for deep learning. Currently, the most fre-

quently updated Fortran framework for this task is neural-Fortran [6], 
which supports building, training, and model parallelism in Fortran. 
However, porting pre-trained neural networks to Fortran using this 
framework would require understanding their deep learning documen-

tation, manually rewriting the model’s architecture, and transferring 
the trained model’s parameters. Other attempts to solve the lack of 
deep learning support in HPC codebases also focus on manually specify-

ing the architecture or converting neural network models from a single 
Python library to an HPC-amenable language. For example, Fortran–

Keras Bridge (FKB) [7] is derived from neural-Fortran and specializes in 
Keras-based models, NEURBT [8] focuses on neural networks for clas-

sification, FANN [9] describes a C library for multilayer feed-forward 
networks, and SAGRAD [10] (like NEURBT) implements training in For-

tran77.

We avoid these drawbacks via a fast and non-intrusive automatic 
conversion tool. This manuscript presents an open-source library called 
RoseNNa that achieves these tasks. RoseNNa is available under the 
MIT license at github .com /comp -physics /roseNNa. As shown in Fig. 1, 
RoseNNa encodes pre-trained neural networks from common machine 
learning libraries via an ONNX-backend and uses fypp, a Python-to-

Fortran metaprogramming language, to generate the library.

RoseNNa targets inference of the artificial neural networks used for 
2

PDE- and CFD-based modeling, supporting commonly used architec-
tures and activation functions in these areas. These network architec-

tures were revealed via a literature survey of about 25 papers that used 
neural networks for modeling and numerics tasks. This survey found 
that MLP implementations consisted of at most 6 hidden layers, and 
85% of them have fewer than 15 hidden layers (or dimensionality), 
and the remaining fraction having fewer than 100 neurons per layer.1

We also reviewed 10 articles using LSTM architectures for similar pur-

poses.2 90% of implementations use fewer than 64-time steps in the 
memory layer and a have a hidden dimension smaller than 32. These 
numbers provide the architectures that RoseNNa should support with 
high performance. The results are also consistent with expectations: 
PDE solvers on discretized grids with many elements that require many 
iterations (or time steps) cannot afford the evaluation of large neural 
networks since they involve relatively many floating point operations.

This manuscript discusses the methodology surrounding RoseNNa 
and example applications to CFD. Section 2 introduces the architecture 
of RoseNNa that enables its flexibility and speed. Section 3 describes its 
user-friendly interface and design, and Section 4 discusses RoseNNa’s 
performance results against Python-based libraries for popular CFD ar-

chitectures. We conclude in section 5 with a discussion of the primary 
results and use cases of the RoseNNa tool.

2. Design strategy

2.1. Design options

RoseNNa follows two main processes: read and interpret the Python-

native model (encode, Fig. 1 (d)) and reconstruct it in Fortran/C (de-

code, Fig. 1 (e)). The tool decomposes key aspects of a neural network 
to define its structure: trained weights (values and dimensions), layer 
functionality, activation functions, and the order of layer connections. 
Using this encoded information, RoseNNa can reconstruct the function-

ality of a neural network in Fortran/C.

Users first convert their model to a unified format via ONNX [11]

(Fig. 1 (b)), a library that provides interoperability between ma-

chine learning libraries, including sklearn [12], PyTorch [13], Tensor-

Flow [14], and Caffe [15]. These libraries share common characteristics 
in their intermediary representations and the functionality of a neural 
network model. Still, they differ in their layer encoding. ONNX unifies 
these differences.

Currently, RoseNNa must support only a subset of all possible neural 
network layers (here: LSTMs, convolutions, pooling layers, and MLPs) 
and their features and activation functions (here: Tanh, ReLU, Sigmoid). 

1 Search terms: “mlp turbulence modeling,” “mlp cfd solver,” “multilayer per-

ceptron computational fluid dynamics”.
2 Search terms: “subgrid closures rnn,” “lstm rnn cfd solver,” “lstm turbulence 
closure,” “lstm rnn rans cfd”.

http://github.com/comp-physics/roseNNa


A. Bati and S.H. Bryngelson

During the “Encoding” process, these layers and their features are de-

tected, and hyperparameters and their ordering are recorded. RoseNNa 
only proceeds if the detected input features are supported. Otherwise, a 
log indicating the unsupported feature is sent to standard output.

The ONNX-interpreted model is decoded using fypp (Fig. 1 (f)), 
a Python-based pre-processor for Fortran codes. The activation func-

tions, model layers, and data structures holding model weights are first 
extracted via fypp and then stored in RoseNNa, specifically in For-

tran code. This ensures no speed is lost to reading in needed values 
while conducting inference. ONNX encodes the model’s structure while 
RoseNNa restores its graph interpretation using fypp.

Alternative solutions to Python-to-HPC model conversion are also 
viable. For example, Python functionality can be integrated into For-

tran by running an instance of Python or exposing a model’s outputs 
through APIs. These attempts, however, are susceptible to cascading 
overhead time issues. The library we present, RoseNNa, removes this 
overhead and enables quick HPC deployment, features that CFD practi-

tioners require for running simulations. The power of RoseNNa comes 
from its internal management of neural networks, ONNX backend, and 
Fortran/C support.

Like established linear algebra libraries like BLAS and LAPACK, 
RoseNNa is a Fortran library. This is an appropriate fit since the li-
brary’s focus is fast evaluation of rather simple mathematical functions, 
like small matrix–matrix and matrix–vector products. In addition, with 
recent updates to the language, Fortran can be readily linked to C, 
which is also often used for these applications. Fortran compilers are 
well optimized and can efficiently handle small matrix–matrix multi-

plies. We found that the optimized Python-based inference speeds for 
smaller model architectures are similar to the speeds seen in RoseNNa, 
as shown in Fig. 2 and Fig. 3.

2.2. ONNX (encoding)

Open Neural Network Exchange (ONNX) [11] is an open-source ar-

tificial intelligence (AI/ML) ecosystem that allows for interoperability 
between preexisting machine learning libraries and provides inference 
optimizations. During the pre-processing stage, RoseNNa encodes the 
neural network model. This entails parsing and storing each layer’s or-

der, weights, dimensions, and other functionality in the library. Any 
supported feature is recorded, regardless of the size of the input model. 
We use ONNX to unify differences between neural network model in-

terpretations and establish a common parser that can be optimized at 
compile time. Users can convert their model to the ONNX due to its 
widespread interoperability support. ONNX is often used in research 
and industry. For example, Someki et al. [16] used ONNX to unify func-

tionality support and Moreno et al. [17] converted a PyTorch model 
to a TensorFlow graph for compatibility with testing software. Like 
Rodriguez and Dassatti [18], RoseNNa reconstructs models from deep-

learning libraries, enabling model designers to keep their native frame-

work.

2.3. Metaprogramming (decoding)

The transition from model topology encoding Fig. 1 (d) to the de-

coding stage in Fig. 1 (e) is performed by a Python-based Fortran 
pre-processor called fypp [19]. In our implementation, fypp translates a 
neural network’s properties into Fortran code before compile-time, thus 
exposing compiler optimizations. This decoding process is unique to 
each neural network, and so is re-run for different neural network mod-

els. The basic functionality of fypp is sufficient to extend RoseNNa with 
new features. Fypp is well maintained and is updated due to its wide us-

age in the Fortran community, though even if it were not, a deprecated 
fypp version would suffice for the RoseNNa’s purposes.

After interpreting the Python-native model, we store its features 
3

and important variable definitions in fypp files. This encoding process 
Computer Physics Communications 296 (2024) 109052

stores the layers, activation functions, and weight parameters while pre-

serving their order. We record these layers’ specific options, including 
whether transposing is required and hyperparameter constants. We de-

signed the tool to record an arbitrary-sized input, looping over each 
detected component and recording their options. We store the pre-

processed information in a text file. RoseNNa tracks changes in matrix 
shapes, allowing it to define variables with their appropriate dimen-

sions in Fortran explicitly. It also stores the output names of each layer 
so they can be referenced during the decoding phase in Fortran. To in-

crease readability, these output names are only defined when the input 
undergoes dimension changes.

The decoding stage (Fig. 1 (f)) references each component described 
above, also looping over the recorded features. Using fypp, the layers 
are called in order with their respective weights, constants, and other 
supplementary options. The encoding and decoding process does not 
have a well-defined upper-limit on input size, limited implicitly by the 
hardware memory. As such, RoseNNa can handle hardware-supported 
inputs, in part owing to fypp’s ability to process arbitrary-length Python 
code.

2.4. RoseNNa capabilities

RoseNNa was designed to support a broad range of neural network 
architectures in CFD. As discussed in section 1, these primarily include 
MLPs and LSTM RNNs. RoseNNa also supports other architectures, such 
as convolutional and pooling layers, which are generally popular and 
could become more broadly used in CFD solvers in the future. RoseNNA 
was built and tested using CPU execution, currently supporting single-

and double-precision models. One can expand RoseNNa for different 
architectures, activation functions, model precision, and other cases as 
needed by following the RoseNNa contributor’s guide. Adding these 
new features to the tool requires only a basic understanding of the ar-

chitecture functionality and how ONNX encodes it.

2.5. Test suite

While the conversion process may compile and a given input runs 
through the converted model successfully, we confirm that the pre-

processing and feature functionality is correct. For this, we use con-

tinuous integration (CI) testing to ensure the converted model output 
matches the outputs of the original Python-native model. Any GitHub 
pull request or commits trigger a CI run of the test suite to ensure pre-

vious functionality remains intact and added functionality is correct.

At the time of writing, RoseNNa has 17 tests, each executed via CI 
with each pull request and commit. RoseNNa tests the core functionality 
of each layer (LSTM, MLP, Maxpool, Avgpool, and Convolutions). Then, 
it creates cases to test different hyperparameters of these layers, includ-

ing size, bias, and stride. Composition tests are also included, combining 
different layers and activation functions. We advise users who are ex-

tending RoseNNa’s functionality to follow the test suite documentation 
and add core, option, and composition tests to ensure pre-processing 
and internal functionality are correctly implemented.

3. User interface

3.1. Using RoseNNa

The user will have access to all files that make up the library. 
RoseNNa is designed for straightforward and non-intrusive integration 
in existing codebases. As described in the pipeline of Fig. 1 (b), the 
only required input to RoseNNa is an ONNX-format pre-trained neural 
network model. Simple pre-processing using the metaprogramming lan-

guage fypp reconstructs the neural network, creating a custom Fortran 
file with an organized subroutine defining the model’s structure. Com-

piling all core files and the fypp-transcribed file creates a library that 

can be linked with an existing code (Fig. 1 (g)).



Computer Physics Communications 296 (2024) 109052A. Bati and S.H. Bryngelson

#: if tup[0] == ’Gemm’

!===Gemm Layer===

call linear_layer(${tup[1][0]}$, &

linLayers(${layer_dict[tup[0]]}$), &

${1-tup[1][1]}$)

Listing 1: Fypp code to generate a linear layer.

fypp
←←←←←←←←←←←←←←←←←←←←→

!===Gemm Layer===

call linear_layer(input, &

linLayers(1),0)

Listing 2: Corresponding Fortran.
program example

use rosenna !import the library

implicit none

real(c_double), dimension(1,2) :: inputs

real(c_double), dimension(1,3) :: output

inputs = reshape((/1.0, 1.0/), (/1, 2/), order=[2, 1])

call initialize() !initialize/load in the weights

call use_model(inputs, output) !conduct inference,

store output

end program

Listing 3: Example Fortran90+ program invoking RoseNNa.

Using RoseNNa in C, except for defining headers for function calls, 
follows the same procedure. To use RoseNNa one imports it, which 
automatically reads and initializes the parameters encoded from the 
trained neural network, and then calls the model’s forward subrou-

tine with the same inputs as the native model. Listing 3 shows this 
lightweight approach.

3.2. Error handling

RoseNNa supports a subset of neural network capabilities, as men-

tioned in section 2. These include MLP, LSTM, Convolutional, and 
Max/AvgPool layers and Tanh, ReLU, and Sigmoid activation functions. 
While functionality can be readily extended, unsupported features de-

tected during the Model Topology Encoding stage will be noticed by 
RoseNNa and raised as an error. These are explicit errors, with the user 
immediately alerted of an unsupported feature. There are, however, 
implicit errors that may occur when the encoded model’s predicted 
outputs are not the same as its Python-native model counterpart (the 
input). This can be associated with incorrect pre-processing or imple-

mentation of an internal feature. Users should write additional test cases 
for their converted models to reduce the possibility of raising errors.

4. Results

4.1. Flexibility and portability

With only a few library calls, RoseNNa can be readily integrated 
into existing programs. It can interface with commonly used machine 
learning libraries and be linked to Fortran and C, the most popular lan-

guages in CFD. RoseNNa can dynamically reconstruct neural networks 
and avoids any manual intervention. RoseNNa can also represent at-

tributes of deep learning models: Layers, activation functions, important 
constants, and more. RoseNNa caters to smaller neural networks (MLPs 
and LSTMs) and supports around 90% of the most popular architectures 
and activation functions used in CFD research. Its simple user interface 
and ability to interpret ONNX-format models enable the conversion of 
a massive pool of promising neural networks in CFD.

4.2. Performance on example cases

We run tests on CFD’s most commonly used architectures, LSTMs 
and MLPs, to compare inference performance differences between 
4

RoseNNa and PyTorch. We compare RoseNNa’s performance to that of 
PyTorch because it is a representative and widely used deep learning 
library.

We use a single CPU core and thread for the testing. We run 100 tests 
in PyTorch on a single thread for each data point using randomly ini-

tialized weights. The same models curated in PyTorch were converted 
to and tested in RoseNNa. Then, we took the ratio of the medians of 
the 100 RoseNNa and 100 PyTorch times. This process was repeated 
25 times for each point in Figs. 2 to 4. Each test was curated under the 
same hardware setting: A single thread of an Intel Xeon Gold 6226 CPU.

Note that we anticipate these results could look different on GPU 
hardware, and, surely, inference times would be lower for both PyTorch 
and RoseNNa. However, it is challenging to ascertain these differences 
since RoseNNa is intended to be invoked at the individual grid cell level 
(or a glob of grid cells). As such, the performance depends strongly on 
how the user handles the GPU kernels that compute other PDE-relevant 
operations at each grid cell. In practice, the GPU threads will likely be 
saturated and RoseNNa, or any other neural network inference library, 
would operate on a single GPU thread.

Results for MLPs are important due to their widespread usage in CFD 
solvers. Their straightforward architectures and computation also allow 
for unproblematic conversions. Most MLPs used in CFD are shallow to 
enable reasonable computation runtimes. Based on this and the results 
of our literature survey, MLPs used to solve large PDE systems like those 
of CFD fall within the axis limits of Fig. 2.

Fig. 2 shows that tests fall under a RoseNNa-to-PyTorch time ra-

tio of one, indicating RoseNNa’s quicker inference speeds. The ratio 
stays near one even for large examples such as 50 neurons and a depth 
of 100, which is uncommon for CFD applications. We further tested 
RoseNNa’s inference speeds against a different PyTorch backend for 
consistency and to ensure we compared against the fastest version of 
PyTorch. Therefore, Fig. 2 (b) represents the same tests run on PyTorch 
with an OpenBLAS backend instead of MKL. RoseNNa is 10% faster (av-

eraged over all 25 test cases) using this backend, but the results still fall 
below a one-time ratio for most CFD use cases. However, with Open-

BLAS, larger architectures entail increasingly slower times.

Small-scale LSTM–RNN architectures are also often used in CFD 
applications. Fig. 3 shows tests conducted at different depths and hid-

den dimension sizes to demonstrate where RoseNNa falls compared to 
PyTorch inference speeds. Most CFD-based LSTMs’ architectures are lo-

cated below the one RoseNNa-to-PyTorch time ratio. Compared with 
an OpenBLAS implementation of PyTorch, RoseNNa seems to be 10%
faster on average. Larger architectures lead to a slower inference time 
ratio as expected.

Fig. 2 and Fig. 3 incorporate published examples of LSTMs and 
MLPs. All four test cases lie in the bottom left corner of the graph 
since they are shallow architectures. A simple conversion from Py-

Torch or TensorFlow to ONNX allowed us to pass the model through 
RoseNNa’s pipeline. Despite their shallow architectures, these papers re-

ported promising results across CFD modeling tasks broadly. For MLPs, 
Zhang et al. [20] proposed combining an artificial neural network with 
a flamelet-generated manifold to solve a memory issue. Zhou et al. [21]

developed a new SGS model for large-eddy simulation (LES), showing 
significant improvements over the conventional models. For LSTMs, 
Srinivasan et al. [22] found this architecture outperformed MLPs in 
predicting turbulent statistics in temporally evolving turbulent flows. 
Lastly, Li et al. [23] uses LSTMs to develop a reduced-order modeling 

of a wind-bridge interaction system.



Computer Physics Communications 296 (2024) 109052A. Bati and S.H. Bryngelson

Fig. 2. Multilayer perceptron (MLP) time comparison (RoseNNa versus PyTorch). 𝛿 represents a specific hidden size (neurons per layer), and the x-axis represents 
the depth (number of hidden layers). Random activation functions (ReLu, Tanh, Sigmoid) were chosen for each MLP and assigned to each hidden layer.

Fig. 3. Long Short-Term Memory (LSTM) time comparison (RoseNNa/PyTorch). The horizontal axis is the number of time steps (depth), and 𝜆 is the hidden 
dimension size. All the typical operations and activation functions were incorporated into the timing of the LSTM cells.
Fig. 4. Multilayer perceptron (MLP) model time comparison (RoseN-

Na/libtorch). 𝛿 is the hidden size, and the horizontal axis is the number of lay-

ers. Libtorch is PyTorch’s C++ API. The same scheme for testing the RoseNNa 
to PyTorch speed ratio for MLPs was used for these tests.

4.3. Comparison to a lower-level implementation

Another approach to reducing Python overhead is to use a library’s 
C/C++ API if supported. For example, PyTorch has a (beta) fully-

native C++ API called libtorch that provides access to most PyTorch 
functionality [13]. Fig. 4 represents comparison tests run on the same 
architectures as Fig. 2 but against libtorch. Most architecture sizes are 
inferred faster via RoseNNa, in particular the smaller ones relevant to 
5

CFD simulation. Larger neural networks, most of which are outside the 
CFD scope, are still slower but near RoseNNa’s speed, even for sizes 
as large as 15 layers of 100 neurons. Libtorch makes up some of the 
RoseNNa–PyTorch speed difference for larger cases, but there are still 
potential issues with relying upon the Torch C++ API (and other ex-

posed backend APIs). For example, libtorch support is liable to change, 
which is stated directly on the Torch website. It also only provides a 
C++ API, thus requiring more work, like a shim layer, for use in For-

tran codebases than RoseNNa.

Python-based overhead might explain part of the time discrep-

ancy of Fig. 2 and Fig. 3, but the main contribution towards the 
speedup is RoseNNa’s compile-time optimization and Fortran imple-

mentation. These results show RoseNNa’s computationally viability for 
ML-enhanced CFD. For the larger architectures in Figs. 2 to 4 that were 
slower in RoseNNa, one can implement large matrix–matrix multiplies 
and other expensive calls via optimized linear algebra libraries like 
BLAS/LAPACK. However, based on our literature survey, these larger 
neural networks fall outside the CFD (and PDE-solver) scope RoseNNa 
focuses on. With no external dependencies, the RoseNNa library is 
lightweight and can be readily incorporated into existing PDE solvers.

5. Conclusions

This paper describes the design, application, and viability of 
RoseNNa, a neural network conversion tool for CFD codebases. It can 
encode a neural network’s features using ONNX, a Python-based library 
we use to unify machine learning libraries. With a Python-powered pre-

processor, fypp, RoseNNa decodes the model in Fortran. We present this 

tool as an alternative to manually defining neural networks in Fortran or 



Computer Physics Communications 296 (2024) 109052A. Bati and S.H. Bryngelson

re-implementing existing libraries’ ML features. In three speed compar-

ison benchmarks we conducted (RoseNNa/MKL, RoseNNa/OpenBLAS, 
RoseNNa/libtorch), RoseNNa’s application in the CFD domain seemed 
to be promising and a more reliable alternative to low-level imple-

mentations of PyTorch, TensorFlow, or other Python-based machine 
learning libraries. RoseNNa supports many popular features and estab-

lishes a streamlined process for increasing its breadth.

RoseNNa presents useful benefits for neural network conversion 
and inference. First, it supports the conversion from Python machine-

learning libraries via ONNX. It is also simple to use. As shown in List-

ing 3, a few API calls enable inference. Lastly, RoseNNa is a lightweight 
tool, enabling integration and minimal intrusiveness in existing and (po-

tentially large) CFD codebases. The library is compiled for the neural 
network and linked to existing code.

RoseNNa’s future lies in improving performance, adding functional-

ity to existing architectures, and expanding to new, popular features. 
With the pipeline of Fig. 1, contributors can incorporate any needed 
feature. We have created an in-depth manuscript about our current 
methodology and how new contributions can be feasibly integrated 
(accessible at github .com /comp -physics /roseNNa). We provide steps 
describing which files to modify and examples, with documentation, of 
their functions and variables. Any new changes can be verified via the 
testing pipeline, allowing contributors to add new features efficiently.

CRediT authorship contribution statement

Ajay Bati: Methodology, Software, Validation, Visualization, Writ-

ing – original draft, Writing – review & editing. Spencer H. Bryn-

gelson: Conceptualization, Funding acquisition, Methodology, Project 
administration, Software, Supervision, Writing – original draft, Writing 
– review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-

tionships which may be considered as potential competing interests: 
Spencer Bryngelson reports financial support was provided by Office of 
Naval Research.

Acknowledgements

This work used Bridges2 at the Pittsburgh Supercomputing Cen-

ter through allocation TG-PHY210084 (PI Spencer Bryngelson) from 
the Advanced Cyberinfrastructure Coordination Ecosystem: Services & 
Support (ACCESS) program, which is supported by National Science 
Foundation grants #2138259, #2138286, #2138307, #2137603, and 
#2138296. SHB also acknowledges the resources of the Oak Ridge 
Leadership Computing Facility at the Oak Ridge National Laboratory, 
which is supported by the Office of Science of the U.S. Department of 
Energy under Contract No. DE-AC05-00OR22725. SHB acknowledges 
support from the Office of the Naval Research under grant N00014-

22-1-2519 (PM Dr. Julie Young). This research was supported in part 
through research cyberinfrastructure resources and services provided 
by the Partnership for an Advanced Computing Environment (PACE) at 
the Georgia Institute of Technology, Atlanta, Georgia, USA.

References

[1] K. Fukami, T. Nakamura, K. Fukagata, Convolutional neural network based hier-

archical autoencoder for nonlinear mode decomposition of fluid field data, Phys. 
Fluids 32 (2020) 095110.

[2] L. Zhu, W. Zhang, X. Sun, Y. Liu, X. Yuan, Turbulence closure for high Reynolds 
number airfoil flows by deep neural networks, Aerosp. Sci. Technol. 110 (2021) 
106452.

[3] R. Laubscher, P. Rousseau, An integrated approach to predict scalar fields of a 
simulated turbulent jet diffusion flame using multiple fully connected variational 
autoencoders and mlp networks, Appl. Soft Comput. 101 (2021) 107074.

[4] P. Pirnia, F. Duhaime, Y. Ethier, J.-S. Dubé, Drag force calculations in polydisperse 
dem simulations with the coarse-grid method: influence of the weighting method 
and improved predictions through artificial neural networks, Transp. Porous Media 
129 (2019) 837–853.

[5] M. Baymani, S. Effati, H. Niazmand, A. Kerayechian, Artificial neural network 
method for solving the Navier–Stokes equations, Neural Comput. Appl. 26 (2015) 
765–773.

[6] M. Curcic, A Parallel Fortran Framework for Neural Networks and Deep Learning, 
ACM SIGPLAN Fortran Forum, vol. 38, ACM, New York, NY, USA, 2019, pp. 4–21.

[7] J. Ott, M. Pritchard, N. Best, E. Linstead, M. Curcic, P. Baldi, A Fortran–Keras deep 
learning bridge for scientific computing, Sci. Program. 2020 (2020) 1–13.

[8] J. Bernal, J. Bernal, NEURBT: A Program for Computing Neural Networks for Clas-

sification Using Batch Learning, US Department of Commerce, National Institute of 
Standards and Technology, 2015.

[9] S. Nissen, Implementation of a fast artificial neural network library (FANN), Re-

port in: Department of Computer Science University of Copenhagen (DIKU), vol. 31, 
2003, p. 26.

[10] J. Bernal, J. Torres-Jimenez, SAGRAD: a program for neural network training with 
simulated annealing and the conjugate gradient method, J. Res. Natl. Inst. Stand. 
Technol. 120 (2015) 113.

[11] J. Bai, F. Lu, K. Zhang, et al., ONNX: Open neural network exchange, https://github .
com /onnx /onnx, 2019.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: machine learning in 
python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, 
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, 
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: an 
imperative style, high-performance deep learning library, Adv. Neural Inf. Process. 
Syst. 32 (2019).

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, 
G. Irving, M. Isard, et al., TensorFlow: a system for large-scale machine learning, 
in: 12th USENIX Symposium on Operating Systems Design and Implementation, in: 
OSDI, vol. 16, 2016, pp. 265–283.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. 
Darrell, Caffe: convolutional architecture for fast feature embedding, in: Proceedings 
of the 22nd ACM International Conference on Multimedia, 2014, pp. 675–678.

[16] M. Someki, Y. Higuchi, T. Hayashi, S. Watanabe, ESPnet-ONNX: bridging a gap 
between research and production, in: 2022 Asia-Pacific Signal and Information Pro-

cessing Association Annual Summit and Conference (APSIPA ASC), IEEE, 2022, 
pp. 420–427.

[17] E.A. Moreno, O. Cerri, J.M. Duarte, H.B. Newman, T.Q. Nguyen, A. Periwal, M. 
Pierini, A. Serikova, M. Spiropulu, J.-R. Vlimant, JEDI-net: a jet identification algo-

rithm based on interaction networks, Eur. Phys. J. C 80 (2020) 1–15.

[18] O. Rodriguez, A. Dassatti, Deep learning inference in GNU radio with ONNX, in: 
Proceedings of the GNU Radio Conference, vol. 5, 2020.

[19] B. Aradi, B. Aradi, O. Schütt, haraldkl, aradi/fypp: Release 3.0, 2020.

[20] Y. Zhang, S. Xu, S. Zhong, X.-S. Bai, H. Wang, M. Yao, Large eddy simulation of 
spray combustion using flamelet generated manifolds combined with artificial neu-

ral networks, Energy AI 2 (2020) 100021.

[21] Z. Zhou, G. He, S. Wang, G. Jin, Subgrid-scale model for large-eddy simulation of 
isotropic turbulent flows using an artificial neural network, Comput. Fluids 195 
(2019) 104319.

[22] P.A. Srinivasan, L. Guastoni, H. Azizpour, P. Schlatter, R. Vinuesa, Predictions of tur-

bulent shear flows using deep neural networks, Phys. Rev. Fluids 4 (2019) 054603.

[23] T. Li, T. Wu, Z. Liu, Nonlinear unsteady bridge aerodynamics: reduced-order model-

ing based on deep LSTM networks, J. Wind Eng. Ind. Aerodyn. 198 (2020) 104116.
6

http://github.com/comp-physics/roseNNa
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibFE82244B928E1CFCE9D2870BED9635B8s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibFE82244B928E1CFCE9D2870BED9635B8s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibFE82244B928E1CFCE9D2870BED9635B8s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib1F9E3B18E39AFFAD22E59B185253B759s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib1F9E3B18E39AFFAD22E59B185253B759s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib1F9E3B18E39AFFAD22E59B185253B759s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib8DEC43C06EEC5FC07404669B7CBA21D3s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib8DEC43C06EEC5FC07404669B7CBA21D3s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib8DEC43C06EEC5FC07404669B7CBA21D3s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib9156184E473454D9942D20A636CB48FAs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib9156184E473454D9942D20A636CB48FAs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib9156184E473454D9942D20A636CB48FAs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib9156184E473454D9942D20A636CB48FAs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib39238B39240C59758A3F432A27536B72s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib39238B39240C59758A3F432A27536B72s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib39238B39240C59758A3F432A27536B72s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib8B8A633FD5DEE87846756AC127EB7359s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib8B8A633FD5DEE87846756AC127EB7359s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibD434514A0C365039AB3D8E9E6AF5C828s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibD434514A0C365039AB3D8E9E6AF5C828s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib5C08B0C37A6481A211E474D796CA7D4Es1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib5C08B0C37A6481A211E474D796CA7D4Es1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib5C08B0C37A6481A211E474D796CA7D4Es1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib5214644DA2E13DFA1BCD6D4D8BF71E3Fs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib5214644DA2E13DFA1BCD6D4D8BF71E3Fs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib5214644DA2E13DFA1BCD6D4D8BF71E3Fs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib88F81D1E873C4595DC2394ACFB856800s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib88F81D1E873C4595DC2394ACFB856800s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib88F81D1E873C4595DC2394ACFB856800s1
https://github.com/onnx/onnx
https://github.com/onnx/onnx
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibCF140574EC642AB39D31AC78D8A17FEFs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib48E7CC35EB5CDF2116CF802C51710706s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib48E7CC35EB5CDF2116CF802C51710706s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib48E7CC35EB5CDF2116CF802C51710706s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib6B436760EAC26B8E2F81034502B231FBs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib6B436760EAC26B8E2F81034502B231FBs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib6B436760EAC26B8E2F81034502B231FBs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib6B436760EAC26B8E2F81034502B231FBs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibFE89683571418424FD9D8D567AB809F2s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibFE89683571418424FD9D8D567AB809F2s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibFE89683571418424FD9D8D567AB809F2s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib011A2089CBD2977259114049ABC4870Cs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib011A2089CBD2977259114049ABC4870Cs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibBAFE036CB06951757E6BD9C0DB4BA234s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibA0FACF450844D0F38583F28AD7666A4Ds1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibA0FACF450844D0F38583F28AD7666A4Ds1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibA0FACF450844D0F38583F28AD7666A4Ds1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibCDECFEDC68E520CC230409804308C5FEs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibCDECFEDC68E520CC230409804308C5FEs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibCDECFEDC68E520CC230409804308C5FEs1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibB2A0F7F131F6733A09EF289B60B6C0E9s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bibB2A0F7F131F6733A09EF289B60B6C0E9s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib6ACBD28F7FEFA4633111209F642A1C20s1
http://refhub.elsevier.com/S0010-4655(23)00397-1/bib6ACBD28F7FEFA4633111209F642A1C20s1

	RoseNNa: A performant, portable library for neural network inference with application to computational fluid dynamics
	1 Introduction
	2 Design strategy
	2.1 Design options
	2.2 ONNX (encoding)
	2.3 Metaprogramming (decoding)
	2.4 RoseNNa capabilities
	2.5 Test suite

	3 User interface
	3.1 Using RoseNNa
	3.2 Error handling

	4 Results
	4.1 Flexibility and portability
	4.2 Performance on example cases
	4.3 Comparison to a lower-level implementation

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


