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Abstract

Eulerian sub-grid models for cavitation like ensemble-averaging are an increasingly viable route
for simulating engineering-scale bubbly flow problems. We identify two primary concerns towards
enabling physically-faithful simulations: sub-grid model fidelity and computational cost. Previous
Euler–Euler models considered the sub-grid bubble radius R and radial velocity Ṙ to be deterministic
and uniform functions of the bubble dynamics model and pressure forcing. We relax this assumption,
allowing R and Ṙ to be arbitrary density functions conditioned on the equilibrium bubble size Ro.
Conditional moment inversion methods reconstruct quadrature nodes and weights in the internal
coordinate directions, which are used to compute the moments that close the fully-coupled flow
equations. We also consider the impact of resolving these disequilibria on quadrature computations
in the Ro (polydisperse) coordinate. A one-dimensional acoustically excited bubble screen is used to
study the effect of model variations. Results show that resolving R and Ṙ disequilibria requires only
modest computational cost. Variation of their coordinate density functions lead to variations in the
dynamic response of the bubble screen, which in principle may be required to faithfully represent
actual bubble screens. We also observe increasing smoothness of the bubble screen pressure response
with increasing Ṙ variation and decreasing R variation. Despite this, the cost of resolving the
Ro-coordinate quadrature direction is dominated by an intrinsically oscillatory behavior associated
with Rayleigh–Plesset-like bubble dynamics rather than the R and Ṙ distributions.
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1. Introduction

Bubble clouds cavitate in applications of broad engineering interest. Examples include blast
trauma [1], kidney stone pulverization lithotripsy [2], and flows over ship propellers and hydrofoils [3].
Realistic simulation of their dynamics and interaction with acoustic waves enables design in
these areas. However, scale separations preclude direct numerical simulation of cavitating bubble
dispersions: small bubbles nucleate and cavitate rapidly relative to the larger and longer features of
suspending flow.

Sub-grid methods address scale chasms via Euler–Euler or Euler–Lagrange phase averaging. Our
previous review of phase averaging indicated that Euler–Euler averaging methods can enable
simulation of engineering-scale cavitating flows [4]. However, their current forms utilize class-based
methods that leave important behaviors unchecked.

Actual bubble dynamics are polydisperse, distributed in their equilibrium bubble size Ro [5, 6]. When
this distribution is broad, the average response of the bubbles to pressure fluctuations damps and
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disperses [7, 8]. However, previous studies assumed delta-function equilibrium-centered distributions
in the bubble dynamic independent variables, e.g. the bubble radii R and their radial velocities Ṙ.
This assumption can only be justified via an accompanying assumption that the bubble dispersion
is in hydrodynamic equilibrium for all time and space. Unfortunately, verifying this assumption for
actual cavitating bubble clouds is challenging.

As a step toward more realistic simulations, we implement a fully-coupled conditional quadrature
moment method for assessing bubble dynamic behavior and computational cost in the face of
disequilibrium. Such methods describe the evolving statistics of the bubble dynamics state. It
is known that skewness and kurtosis form for sufficiently strong bubble dynamics [9]. Thus, our
method is based on the conditional hyperbolic quadrature method of moments (CHyQMOM) [10],
which does not a priori assume a distribution shape. Our implementation couples CHyQMOM to
the compressible flow equations as in Bryngelson et al. [4]. Section 2 details this formulation and
the bubble model that closes it.

Bubble disequilibria dynamics can be assessed via a broad change of unit problems. Herein, we
consider an acoustically excited bubble screen due to its physical relevance and the availability
of reference data [11]. Varying characters of the statistical state of cavitation are controllable via
the initial density functions describing their distributions. Here, we vary the breadth of initially
log-normal and normal profiles for radial and radial velocity coordinates, respectively. Section 3
details the ability of our method to represent the evolving statistics of fully-polydisperse bubble
dynamics and section 4 provides concluding remarks.

2. Model formulation

2.1. Rayleigh–Plesset bubble dynamic model

The bubbles are assumed to be spherical and gas-filled with dynamics governed by a Rayleigh–Plesslet
equation for the bubble radius R and its time derivatives (overdots):
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where Re is the Reynolds number (dimensionless ratio of inertial to viscous effects) whose value
is chosen as a repsentation of micron-scale bubbles in water. The forcing term Cp(t) ≡ pl(t)/p0

is the ratio of suspending liquid and atmospheric pressures. The bubble contents compress via a
polytropic adiabatic process with coefficient γ = 1.4.

2.2. Quadrature moment method

A population balance equation (PBE) governs the number density function f(ξ) representing
the bubble statistics in terms of its internal coordinates ξ = {R, Ṙ,Ro} [12]. Following a usual
procedure [12], we describe f via a finite set of raw moments µlmn where l, m, and n correspond to
the R, Ṙ, and Ro coordinate directions. The moment transport equations follow from [9]:

∂µlmn
∂t

= lµl−1,m+1,n +m

∫
Ω
R̈(ξ)RlṘm−1Rno f(ξ) dξ. (2)

Since Ro is not a dynamic variable the total moments can be recast as

µlmn =

∫
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m
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In (3), f(Ro) is a static log-normal distribution corresponding to polydispersity and f(R, Ṙ|Ro) are
the conditional number density functions. Since f(Ro) is fixed in time, the first integral is computed
with a fixed quadrature formula. Conditional moment methods approximate the multi-dimensional
moments µlm(Ro) [13, 14].

2.3. Averaging

Our formulation of the ensemble-averaged equations generally follows that of Zhang and Prosperetti
[15] and Ando [16]. A complete description of them in included in previous works [4]. In brief,
they differentiate from the multi-component compressible flow equations by modifying the liquid
pressure and volume fraction equations with source terms. These source terms are functions of the
raw moments µlmn that are computed using the quadrature rules of section 2.2. The governing
equations are solved using the MFC open-source flow solver. It uses a diffuse interface method
with fifth-order-accurate WENO reconstruction, a HLLC approximate Riemann solver, and third-
order-accurate SSP–RK3 time integration. Further details on the implementation are available
elsewhere [17].

3. Results

3.1. Uncoupled bubble dynamics statistics in the R–Ṙ phase-space

We first assess the ability of CHyQMOM to represent the statistics associated with Ro-monodisperse
but R and Ṙ disequilibrium bubble dynamics. The statistics are initialized with log-normal and
normal distributions with variances σ2

R and σ2
Ṙ

for the R and Ṙ dynamics, respectively. The bubbles
respond to a uniform pressure forcing Cp.
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Figure 1: Example moment evolutions as labeled for bubble dynamics parameterized by Ro = 1 and Re = 102 and
dimensionless shape parameters σR = σṘ = 0.2. The CHyQMOM implementation uses two quadrature nodes in each
internal coordinate direction. The surrogate exact solution is provided by 104 Monte Carlo simulations.

Figure 1 shows the evolution of an example moment set and forcing Cp = 0.3, which is known
to develop significant skewness and kurtosis [9]. We note that the conclusions drawn from this
moment set and pressure ratio is representative of a broader range of Cp and higher-order moments
alike. The figure shows that the 4-node CHyQMOM closure is sufficient to accurately represent the
moments. The discrete L2 error for up to second-order moments are smaller for CHyQMOM than
Gaussian closure (see [9]). Thus, we move forward CHyQMOM for its ability to efficiently represent
the R− Ṙ statistics.

3.2. Fully-coupled polydisperse bubble screens

We next assess the bubble dynamics and statistics in an acoustically-excited dilute screen region.
The bubble screen parameterization generally matches that of Bryngelson et al. [4], with a width of
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5 mm and initial void fraction αo = 10−4. The acoustic wave is a single period of a sinusoid with
peak amplitude 0.3p0 and frequency 300 kHz.
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Figure 2: Bubble-screen-centered pressure before, during, and after excitement due to an acoustic wave. The bubbles
are polydisperse with log-normal Ro distribution (σRo = 0.2) and Re = 103. Panels (a) and (b) show variation in σR

and σṘ, respectively, about a σR = σṘ = 0.2 representative state.

Figure 2 shows the dynamics associated with a bubble screen in varying degrees of statistical
disequilibrium. Panel (a) shows a shorter-wavelength oscillatory behavior superimposing the longer
acoustic waves. These oscillations are larger in amplitude for larger σR. Panel (b) shows that
phase-cancellation can result in a smoother pressure profile, with increasingly smooth profiles
for larger σṘ. Together, behaviors are qualitatively similar to those associated with varying Ro
distribution widths. Thus, tuning to an anticipated Ro distribution based upon just single-probe
pressure measurements may not be sufficient.

In the results of figure 2, Simpson’s rule with 61 nodes closes the moment system in the Ro internal
coordinate, Thus, the primary computational cost of these simulations is associated with the
Ro-polydispersity, rather than the four-node CHyQMOM R − Ṙ closure. Further, resolving the
Ro dynamics is relatively insensitive to both the type of quadrature used in that direction (e.g.
Gaussian-type quadratures) and the R and Ṙ distributions. As a result, analyzing the effect of R
and Ṙ disequilibria on more complex cavitating flows should not be prohibitive.

4. Conclusion

We introduced a fully-coupled numerical method for simulating sub-grid cavitating bubble disper-
sions in full statistical disequilibrium. Our results showed that only few quadrature points are
required to represent the statistics of the bubble dynamic variables when the population has one
equilibrium radius. Modeling for this disequilibrium results in a qualitatively different pressure
response of an excited bubble screen. Thus, modeling R–Ṙ disequilibria and statistics might be
necessary for representing actual cavitating bubble dispersions. Detailed experimental data are
required to determine if this is indeed required in some or all cases. Further, our results indicated
that phase-cancellation can modestly reduce some computational costs associated with resolving the
Ro coordinate. However, Ro-direction quadrature costs still dominate the solution of broadly poly-
disperse bubble populations. This leaves the door open for new approaches to reduce computational
cost of Ro-polydispersity.
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