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a b s t r a c t

MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows.
It is capable of efficiently solving a wide range of flows, including droplet atomization, shock–bubble
interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent
diffuse-interface models we use to handle such flows, which are coupled to high-order interface-
capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of
simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible,
modular framework that is amenable to future development. The methods we employ are validated
via comparisons to experimental results for shock–bubble, shock–droplet, and shock–water–cylinder
interaction problems and verified to be free of spurious oscillations for material-interface advection
and gas–liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex,
the methods are verified to be high-order accurate. Illustrative examples involving shock–bubble–
vessel-wall and acoustic–bubble–net interactions are used to demonstrate the full capabilities of
MFC.
Program summary
Program title: MFC (Multi-component Flow Code)
CPC Library link to program files: http://dx.doi.org/10.17632/8y55zscjd3.1
Developer’s repository link: https://mfc-caltech.github.io
Licensing provisions: GNU General Public License 3
Programming language: Fortran 90 and Python
Nature of problem: Computer simulation of multi-component flows requires careful physical model
selection and sophisticated treatment of spatial and temporal derivatives to keep solutions both
thermodynamically consistent and free of spurious oscillations. Further, such methods should be high-
order accurate for smooth solutions to reduce computational cost and promote sharper interfaces for
discontinuous ones. These problems are particularly challenging for flows with material interfaces,
which are important in numerous applications.
Solution method: The present software incorporates multiple physical models and numerical schemes
for treatment of compressible multi-phase and multi-component flows. Additional physical effects and
sub-grid models are included, such as an ensemble-averaged bubbly flow model. The architecture was
designed to ensure that further development is straightforward.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The multi-component flow code (MFC) is an open source high-
rder solver for multi-phase and multi-component flows. Such
lows are central to a wide range of engineering problems. For
xample, cavitating flow phenomena are of critical importance
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to the development of artificial heart valves and pumps [1], min-
imizing injury due to blast trauma [2,3], and improving shock-
and burst-wave lithotripsy treatments [4–6]. Bubble cavitation is
also pervasive in flows around hydrofoils, submarines, and high-
velocity projectiles [7–9], during underwater explosions [10,11],
and within pipe systems and hydraulic machinery [12,13]. Un-
fortunately, cavitation in these settings is usually detrimental,
causing noise and material deterioration [12,13]. Other cases of
interest include the breakup of liquid droplets and jets [14–16],
erosion of aircraft surfaces during supersonic flight [17,18],
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shock-wave attenuation of nuclear blasts [19], and needle-free
injection for drug delivery [20,21].

Robust simulation of multi-component compressible flow
phenomena requires a numerical method that maintains discrete
conservation, suppresses oscillations near discontinuities, and
preserves numerical stability. For such simulations to be compu-
tationally efficient, the method used should also be high-order
accurate away from discontinuities. Schemes that can potentially
achieve these requirements can be classified as either interface-
tracking or interface-capturing [22]. Examples of interface-
tracking methods include free-Lagrange [23,24], front-tracking
[25,26], and level-set/ghost fluid schemes [27–33]; these methods
differ from interface-capturing as they treat material interfaces
as sharp features in the flow. This allows interfacial fluids to
have differing equations of state and ensures that interfacial
physics are straightforward to implement. Unfortunately, they
do not naturally enforce discrete or total conservation, though
there have been some recent attempts to partially include these
properties [34,35]. Interface-capturing methods instead treat in-
terfaces as discontinuities in material properties via advected
volume fractions. Such methods are generally more efficient than
interface-tracking schemes [36] and can achieve discrete conser-
vation by simply solving the governing equations in conservative
form. However, they also smear material interfaces via numerical
diffusion [37–39]. In these smeared regions, we must ensure
that the mixture properties are treated in a thermodynamically-
and numerically-consistent way, such that spurious oscillations
(and other physical inconsistencies) are avoided in the pres-
ence of high density contrasts between materials. Fortunately,
such methods have been developed and prove to be a robust
treatment of interfacial dynamics [37,40,41]. Still, the lack of a
coherent material interface means that interfacial physics are
more challenging to implement than interface-tracking methods,
though conservative treatments do exist for both interfacial heat
transfer [42] and capillary effects [16,38,43].

Here, we choose to use an interface-capturing scheme be-
cause computational efficiency and discrete conservation are of
principal importance to many problems of interest. The interface-
capturing schemes we use follow from the so-called 5- and
6-equation models, which are known to be sufficient for rep-
resenting a wide range of flow phenomenologies [42,44–46].
They are complemented by a discretely-conservative numerical
method that solves the conservative form of the compressible
flow equations. To maintain a non-oscillatory behavior near ma-
terial interfaces, the material advection equations are formulated
in a quasi-conservative form [47]. The equations of motion are
then closed by a thermodynamically consistent set of mixture
rules [44]. The governing equations are solved with a shock-
capturing finite-volume method. Specifically, we adopt a WENO
spatial reconstruction that can achieve high-order accuracy while
maintaining non-oscillatory behavior near material interfaces [41,
48–50]. This scheme is then coupled with an HLL-type approx-
imate Riemann solver [51,52] and a total-variation-diminishing
(TVD) time stepper [53].

MFC is, of course, not the only viable option for simulation of
compressible multi-phase flows. For example, ECOGEN [54] offers
a pressure-disequilibrium-based interface-capturing scheme that
is well suited for the same problems reached by MFC. However,
ECOGEN is built upon an intrinsically low-order MUSCL scheme
that can inhibit both efficient simulation and physically fidelity
when compared to the WENO schemes we use here, especially
when augmented with our high-order cell-average approxima-
tions. This is demonstrated in Section 5.4 for an isentropic vortex
problem and in Section 5.3 and Schmidmayer et al. [55] for cavi-
tating gas bubbles. In pursuit of this, MFC was also constructed

with a phase-averaged flow model that represent unresolved
multi-phase dynamics at the sub-grid level. More mature CFD
solvers such as OpenFOAM are also available. OpenFOAM natively
supports finite-volume methods for multi-component flows [56],
though higher-order methods and interface-capturing models are
only available via links to external forked projects. MFC instead
offers an integrated approach that avoids any conflicts from such
libraries. Finally, the parallel I/O file systems we employ ensures
that the MFC architecture can scale up to the largest modern
HPC systems. Note that MFC suffers from some of the same
limitations as many compressible flow solvers. For example, time
step restrictions can be prohibitive for low-Mach-number flows,
such as those over ship screw propellers. Additionally, satisfaction
of the closure assumptions of the bubbly-flow model must also
be checked. Indeed, cases involving sheet cavitation will likely
violate this closure.

Herein, we describe version 1.0 of MFC. In Section 2 we
present an overview of what is included in the MFC package,
including its organization, features, and logistics. The physical
models we use are presented in Section 3, including the asso-
ciated mixture rules, governing equations, equations of state, and
our implementation of an ensemble-averaged bubbly flow model.
The numerical methods used to solve the associated equations are
presented in Section 4. A series of test cases simulated using MFC
are discussed in Section 5; these verify and validate our method.
These are complemented by a set of illustrative example cases
that further demonstrate MFC’s capabilities in Section 6 and par-
allel benchmarking in Section 7, which analyzes the performance
of MFC on large scale computing clusters. Section 8 concludes our
presentation of MFC.

2. Overview and features

2.1. Package, installation, and testing

MFC is available at https://mfc-caltech.github.io. Its
source code is written in Fortran 90 with MPI bindings for parallel
communication. Python scripts are used to generate input files.
Installation of MFC requires the FFTW package for cylindrical co-
ordinate treatment [57], and, optionally, Silo and its dependencies
for post-treatment of data files [58]. We only provide the FFTW
package with MFC to keep the package size relatively small.

The MFC package includes several directories; their organiza-
tion and descriptions are shown in Table 1. New users should
consult the CONFIGURE and INSTALL files for instructions on
how to compile MFC. In brief, the user must ensure that Python
and an MPI Fortran compiler are loaded and that the FFTW
package can be located by Makefile; this can be done by point-
ing Makefile.user to the correct location or by installing the
included FFTW distribution in the installers directory. Once
the software has been built, the test target of Makefile should
be called; it runs multiple tests (which are located in the tests
directory) to ensure that MFC is operating as intended.

2.2. Features

MFC uses a fully parallel environment via message passing
interfaces (MPI), the performance of which is the subject of
Section 7. Computationally, it includes structured Cartesian and
cylindrical grids with non-uniform mesh stretching available;
characteristic-based Thompson, periodic, and free-slip boundary
conditions have also been implemented. The 5- and 6-equation
flow models can be used with a flexible number of components,
as discussed in Section 3. Ensemble-averaged dilute bubbly flow
modeling is also available, including options for Gilmore and

Keller–Miksis single-bubble models (see Section 3.3). The nu-

https://mfc-caltech.github.io
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Table 1
Descriptions of the files and directories included in MFC. [component] is one of pre_process,
simulation, or post_process.
Name Description

example_cases/ Example and demonstration cases
doc/ Documentation
installers/ Package installers: Includes FFTW
lib/ Libraries
src/ Source code

master_scripts/ Python modules and dictionaries, optional source files
pre_process_code/ Generates initial conditions and grids
simulation_code/ Flow solver

post_process_code/ Processes simulation data
tests/ Test cases to ensure software is operating as intended
AUTHORS List of contributors and their contact information
CONFIGURE Package configuration guide
COPYRIGHT Copyright notice
INSTALL Installation guide
LICENSE The GNU public license file
Makefile.in Makefile input; generally does not need to be modified
Makefile.user User inputs for compilation; requires attention from user
Makefile Targets: all (default), [component], test, clean
RELEASE Release notes
o
w
t
t
f

merical methods are discussed in Section 4; they include 1-, 3-,
and 5th order accurate WENO reconstructions on optionally the
primitive, conservative, or characteristic variables. Within each
finite volume, high-order evaluation is available for the cell-
averaged variables via Gaussian quadrature for multi-dimensional
problems. The shock-capturing schemes are paired with either
HLL, HLLC, or exact Riemann solvers. For time-stepping, 1–5th
order accurate Runge–Kutta methods are available. These features
will, of course, evolve and expand with time.

Of great practical importance are the user interfaces we utilize.
FC features Python input scripts, which operate via dictionar-

es to automatically write input files that are read via Fortran
amelists. Additionally, the file system and data formats were
elected to enable large-scale parallel simulations. Specifically, we
se the Luster file system to generate and read restart files; it can
upport gigabyte-per-second-scale IO operations and petabyte-
cale storage requirements [59], which ensures that the MFC can
tilize the full capabilities of modern HPC systems. We also utilize
DF5 Silo databases, which keeps the file structure compact and
nables parallel visualization. We have confirmed that MFC works
s expected on various high-performance computing platforms,
ncluding modern SGI- and Dell-based supercomputers.

.3. Software structure

.3.1. Pre-processing
The pre-processor generates initial conditions and spatial grids

rom the physical patches specified in the Python input file and
xports them as binary files to be read by the simulator. Specif-
cally, this involves allocating and writing either a Cartesian or
ylindrical mesh, with the option of mesh stretching, according
o the input parameters. The specified physical variables for each
atch are transformed into their conservative form and written
n a manner consistent with the mesh. The pre-processor is
omprised of individual Fortran modules that read input values
nd export mesh and initial condition files, assign then dis-
ribute global variables via MPI, perform variable transformations,
enerate grids, parse and assign patch types, and check that spec-
fied input variables are physically consistent and that specified
ptions do not contradict each other.

.3.2. Simulation
The simulator, given the initial-condition files generated by

he pre-processor, solves the corresponding governing flow
equations with the specified boundary conditions using our
interface-capturing numerical method. Simulations are conducted
for the number of time steps indicated. The simulator exports
run-time information, restarts files that can be used to either
restart the simulation or post-process the associated data, and,
optionally, human-readable output data. The structure of the
simulator follows that of pre-processor, with individual Fortran
modules conducting each software component; this includes
reading and exporting data and grid files, performing Fourier
transforms, assigning and distributing global variables via MPI,
performing variable transformations, computing time and spa-
tial derivatives using WENO and the Riemann solver specified,
computing boundary values, including ensemble-averaged bubbly
flow physics, and checking that the input variables are valid.

2.3.3. Post-processing
The post-processor reads simulation data and exports HDF5/

Silo databases that include variables and derived variables, as
specified in the input file. Since the simulator can export human-
readable data, post-processing is not essential for the usage of
MFC, but is a useful tool, especially for large or parallel data
structures. Specifically, the post-process component of the MFC
reads the restart files exported by the simulator at distinct time
intervals and computes the necessary derived quantities. The
HDF5 database is then generated and exported, and can be readily
viewed using, for example, VisIt [60] or Paraview [61]. Again, in-
dividual Fortran modules perform the associated tasks, including
reading data, parameter conversion, assigning and distributing
global MPI variables, computing Fourier transforms, exporting
HDF5 Silo databases, and checking that the input parameters are
consistent.

2.4. Description of input/output files

We next describe the contents of a case-specific directory
and its logistics. The specific file structure is shown in Table 2.
The Python script input.py is used to generate the input files
(∗.inp) for the source codes and execute an MFC component (one
f pre_process, simulation, or post_process) either in the active
indow or as a submitted batch script. This Python file contains
he input parameters available for the MFC. MFC, depending upon
he component used and options selected, will generate several
iles and directories. If enabled, the run_time.inf file will be
generated by the simulator and includes details about the current
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Table 2
Input/output files in the case-specific directory.

Name Description

Input

input.py Input parameters
pre_process.inp Pre-process input parameters, auto-generated
simulation.inp Simulation input parameters, auto-generated

post_process.inp Post-process input parameters, auto-generated

Output

run_time.inf Run-time information including current simulation time and CFL
D/ Formatted simulation output files
p_all/ Binary simulation restart files (depending upon options used)
restart_data/ Luster restart files (depending upon options used)
silo_HDF5/ Silo post-process files (depending upon options used)
binary/ Binary post-process files (depending upon options used)
e
s
t
t
t
g
c
c
c
m

3

c
m
i
p

time step, simulation time, and stability criterion. Directories that
contain binary restart data and output files for visualization or
further post-treatment are generated, again depending upon the
specified options, by the simulator and post-processor.

3. Physical model and governing equations

The mechanical-equilibrium compressible multi-component
low models we use can be written as
∂q
∂t

+ ∇ · F (q)+ h (q)∇ · u = s (q) , (1)

where q is the state vector, F is the flux tensor, u is the velocity
field, and h and s are non-conservative quantities we describe
subsequently.

3.1. 5-equation model

We first introduce our implementation of the thermodynam-
ically consistent mechanical-equilibrium model of Kapila et al.
[45]. Our multi-component implementation can be used for Nk
components, though we present a two-component (Nk = 2)
configuration here for demonstration purposes. It consists of five
partial differential equations as

q =

⎡⎢⎢⎢⎣
α1
α1ρ1
α2ρ2
ρu
ρE

⎤⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎣
α1u
α1ρ1u
α2ρ2u

ρuu + pI − T
(ρE + p) u − T · u

⎤⎥⎥⎥⎦ ,

h =

⎡⎢⎢⎢⎣
−α1 − K

0
0
0
0

⎤⎥⎥⎥⎦ , s = 0,

(2)

where ρ, u, and p are the mixture density, velocity, and pressure,
respectively, αk is the volume fraction of component k, and T is
the viscous stress tensor (with no bulk stresses)

T = 2η
(
D −

1
3
(∇ · u)I

)
, (3)

where η is the mixture shear viscosity and

D =
1
2

(
∇u + (∇u)⊤

)
(4)

s the strain rate tensor. The mixture total and internal energies
re E = e + ∥u∥

2/2 and

=

Nk∑
k=1

Ykek (ρk, p) , (5)

respectively, where Yk = αkρk/ρ are the mass fractions of each
component. We close (5) using the stiffened-gas equation of state,
which is chosen for its ability to faithfully model both liquids and
gases [62]; for component k it is

pk = (γk − 1)ρkek − γkπ∞,k, (6)

where γ is the specific heat ratio and π∞ is the liquid stiff-
ness (gases have π∞ = 0) [63]. For liquids, these are usually
interpreted as fitted parameters from shockwave-Hugoniot data
[64,65]. The speed of sound of each component is then

ck =

√
γk(pk + π∞,k)

ρk
. (7)

The K term in h of (2) represents expansion and compression
in mixture regions. For an Nk = 2 configuration it is

K =
ρ2c22 − ρ1c21
ρ2c22
α2

+
ρ1c21
α1

(8)

and the mixture speed of sound c follows as the so-called Wood
speed of sound [66,67]

1
ρc2

=

Nk∑
k=1

αk

ρkc2k
. (9)

Ultimately, the equations are closed by the usual set of mixture
rules

1 =

Nk∑
k=1

αk, ρ =

Nk∑
k=1

αkρk, ρe =

Nk∑
k=1

αkρkek, and

η =

Nk∑
k=1

αkηk.

(10)

We note that the models of Allaire et al. [44] and Massoni
t al. [42] do not include the K term in (2) and thus do not
trictly obey the second-law of thermodynamics, nor reproduce
he correct mixture speed of sound (9). While MFC also supports
hese models, accurately representing the sound speed is known
o be important for some problems, such as the cavitation of
as bubbles [55]. However, it is also known that the K term
an result in numerical instabilities for problems with strong
ompression or expansion in mixture regions due to its non-
onservative nature [55]. Thus, the decision of what 5-equation
odel to use (if any) is problem dependent and left to the user.

.2. 6-equation model

While the 5-equation model described in Section 3.1 is effi-
ient and represents the correct physics, the K∇ · u term that
akes the model thermodynamically consistent can sometimes

ntroduce numerical instabilities [46,55]. In such cases, a
ressure-disequilibrium is preferable [55]. We also support the
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6-equation pressure-disequilibrium model of Saurel et al. [46],
which for a two-component configuration is expressed as

q =

⎡⎢⎢⎢⎢⎢⎣
α1
α1ρ1
α2ρ2
ρu

α1ρ1e1
α2ρ2e2

⎤⎥⎥⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎢⎢⎣
α1u
α1ρ1u
α2ρ2u

ρuu + pI − T
α1ρ1e1u
α2ρ2e2u

⎤⎥⎥⎥⎥⎥⎦ ,

h =

⎡⎢⎢⎢⎢⎢⎣
−α1
0
0
0
α1p1
α2p2

⎤⎥⎥⎥⎥⎥⎦ , s =

⎡⎢⎢⎢⎢⎢⎣
µδp
0
0
0

−µpIδp − α1T 1 : ∇u
µpIδp − α2T 2 : ∇u

⎤⎥⎥⎥⎥⎥⎦ ,
(11)

here T k are the component-specific viscous stress tensors and
he other terms of s represent the relaxation of pressures between
omponents with coefficient µ. The interfacial pressure is

I =
z2p1 + z1p2

z1 + z2
, (12)

here zk = ρkck is the acoustic impedance of component k and

p = p1 − p2, (13)

s the pressure difference. Since p1 ̸= p2, the total energy equa-
ion of the mixture is replaced by the internal-energy equation for
ach component. The mixture speed of sound is defined according
o

2
=

2∑
k=1

Ykc2k , (14)

though after applying the numerical infinite pressure-relaxation
procedure detailed in Section 4.6 the effective mixture speed of
sound matches (9).

3.3. Bubbly flow model

3.3.1. Implementation
MFC includes support for the ensemble-phase-averaged bub-

bly flow model of Zhang and Prosperetti [68], and our implemen-
tation of it matches that of Bryngelson et al. [69]. The bubble
population has void fraction αb, which is assumed to be small, and
the carrier components have mixture pressure pl. The equilibrium
adii of the bubble population are represented discretely as Ro,
which are Nbin bins of an assumed log-normal PDF with standard
deviation σp [70,71]. The instantaneous bubble radii are a function
of these equilibrium states as R(Ro) = {R1, R2, . . . , RNbin}. The
total mixture pressure is modified as

p = (1 − αb)pl + αb

⎛⎝R3pbw

R3
− ρ

R3Ṙ2

R3

⎞⎠ , (15)

where Ṙ are the bubble radial velocities and pbw are the bubble
wall pressures. Overbars · denote the usual moments with respect
to the log-normal PDF. The bubble void fraction is advected as

∂αb

∂t
+ u · ∇αb = 3αb

R2Ṙ

R3
, (16)

and the bubble dynamic variables are evolved as
∂nφ
∂t

+ ∇ · (nφu) = nφ̇, (17)

where φ ≡
{
R, Ṙ, pb,mv

}
(see Section 3.3.2) and n is the con-

served bubble number density per unit volume

n =
3 αb

. (18)

4π R3
3.3.2. Single-bubble dynamics
A partial differential equation following (17) is evolved for

each bin representing equilibrium radius Ro. These equations
assume that each bubble evolves, without interaction with its
neighbors, in an otherwise uniform flow whose properties are
dictated by the local mixture-averaged flow quantities [72]. We
also assume that the bubbles remain spherical, maintain a uni-
form internal pressure, and do not break-up, or coalesce. Our
model includes the thermal effects, viscous and acoustic damping,
and phase change. The bubble radial accelerations R̈ are computed
y the Keller–Miksis equation [73]:

R̈
(
1 −

Ṙ
cb

)
+

3
2
Ṙ2

(
1 −

Ṙ
3cb

)
=

pbw − pl
ρ

(
1 +

Ṙ
cb

)
+

Rṗbw
ρcb

,

(19)

here cb is the usual speed of sound associated with the bubble
nd

bw = pb −
4µṘ
R

−
2σ
R

(20)

is the bubble wall pressure, for which pb is the internal bubble
pressure, σ is the surface tension coefficient, and µ is the liquid
viscosity. The evolution of pb is evaluated using the model of Ando
[72]:

ṗb =
3γb
R

(
RvTbwṁv − Ṙpb +

γb − 1
γb

λbw
∂T
∂r

⏐⏐⏐⏐
r=w

)
, (21)

where T is the temperature, λ is the thermal conductivity, Rv

is the gas constant and γb is the specific heat ratio of the gas.
Mass transfer of the bubble contents follows the reduced model
of Preston et al. [74] as

ṁv =
Dρbw

1 − χvw

∂χv

∂r

⏐⏐⏐⏐
w

. (22)

4. Solution method

Our numerical scheme generally follows that of Coralic and
Colonius [41]. The spatial discretization of (1) in three-
dimensional Cartesian coordinates is
∂q
∂t

+
F x(q)
∂x

+
F y(q)
∂y

+
F z(q)
∂z

= s(q) − h(q)∇ · u, (23)

here F xi are the i ∈ (x, y, z)-direction flux vectors and the
reatment of ∇ · u is discussed later.

.1. Treatment of spatial derivatives

We use a finite volume method to treat the spatial derivatives
f (23). The finite volumes are

i,j,k = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] × [zk−1/2, zk+1/2]. (24)

e spatially integrate (23) within each cell-centered finite vol-
me as

dqi,j,k

dt
=

1
∆xi

[F x
i−1/2,j,k − F x

i+1/2,j,k]+

1
∆yj

[F y
i,j−1/2,k − F y

i,j+1/2,k]+

1
∆zk

[F z
i,j,k−1/2 − F z

i,j,k+1/2] + s(qi,j,k) − h(qi,j,k)(∇ · u)i,j,k,

(25)

where

qi,j,k =
1

∫∫∫
q(x, y, z, t) dxdydz, (26)
Vi,j,k Ii,j,k
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si,j,k =
1

Vi,j,k

∫∫∫
Ii,j,k

s(x, y, z, t) dxdydz, (27)

F i+1/2,j,k =
1

∆yj∆zk

∫∫
Ai+1/2,j,k

F (x, y, z, t) dydz, (28)

are cell-volume and face averages, for which ∆xi = xi+1/2 −xi−1/2
are the mesh spacings (∆y and ∆z have the same form), and Vi,j,k
and Ai+1/2,j,k are the cell volumes and face areas.

MFC can approximate this equation using high-order quadra-
tures as opposed to simple cell-centered averages. This approach
computes the flux surface integrals and source terms using a
two-point, fourth-order, Gaussian quadrature rule, e.g.

F i+1/2,j,k =
1
4

2∑
m=1

2∑
l=1

F (q(xi+1/2, yjl , zkm )), (29)

here l and m are the Gaussian quadrature point indices and

jl = yj + (2l + 1)
∆yj
2
√
3

and zkm = zk + (2m + 1)
∆zk
2
√
3
. (30)

Note that while this approach enables higher-order accuracy, it
does entail greater computational expense. The divergence terms
are treated using a midpoint rule

(∇ · u)i,j,k =

1
∆xi

(ui+1/2,j,k − ui−1/2,j,k) +
1
∆yj

(vi,j+1/2,k − vi,j−1/2,k)

+
1
∆zk

(wi,j,k+1/2 − wi,j,k−1/2),

(31)

where u = {u, v, w} are the cell-averaged velocity components
omputed analogous to (29).
To avoid spurious oscillations at material interfaces, we ul-

imately evaluate the fluxes by reconstructing the primitive or
haracteristic variables at the cell faces via a 5th-order-accurate
ENO scheme [41] (though reconstruction of the conservative

ariables and lower-order WENO schemes are also supported).
his allows us to apply a Riemann solver, so

i+1/2,j,k =
1
4

2∑
m=1

2∑
l=1

F̂ (qL
i+1/2,j,k, q

R
i+1/2,j,k), (32)

where F̂ is the numerical flux function of the Riemann solver and
superscripts L and R indicate left- and right-sided WENO recon-
tructions. Reconstruction in the y and z directions has the same
orm, though the high-order cell-averaging of (29) is required
o achieve higher than second-order accuracy (see Section 5.4).
e use the HLLC approximate Riemann solver to compute the

luxes [52], though other Riemann solvers are also supported.

.2. Limiters for improved numerical stability

.2.1. Volume fraction limiting
Following our mixture rules (10), the volume fractions are

hysically required to sum to unity. However, the accumulation
f numerical errors can preclude this if the first Nk − 1 volume
ractions exceed unity, and thus one of the volume fractions must
e negative [75]. This is of course unphysical and leads to other
umerical issues, such as complex speeds of sound. To treat this,
e impose the volume fraction mixture rule by limiting each
olume fraction as 0 ≤ αk ≤ 1 for all components k, then
escaling them as

k =
αk∑Nk
k=1 αk

for k = 1, . . . ,Nk. (33)

We note that we only use this limiting when computing the
mixture properties, and do not alter them otherwise as to avoid
polluting the mass conservation properties of the method.
4.2.2. Flux limiting
The WENO schemes we utilize are, in general, not TVD. This

can be problematic when WENO cannot form a smooth stencil to
reconstruct, and can lead to numerical instabilities even when the
usual CFL criteria are met. MFC supports advective flux limiting to
treat this issue, which improves stability, though it also increases
numerical dissipation and thus smearing of material interfaces.
However, we use the gradient of the local volume fraction χ to
minimize this effect, which localizes the limiter to non-smooth
regions of the flow. In one dimension of our dimensional-splitting
procedure this yields

χi =

{ αi−αi−1
αi+1−αi

if u∗
≥ 0,

αi+2−αi+1
αi+1−αi

if u∗ < 0,
(34)

where i is the spatial index and u∗ is the local velocity computed
by the Riemann solver. Ultimately, the modified flux is a com-
bination of a low- and high-order accurate flux approximation.
The low-order flux is chosen to be equivalent to a first-order
WENO reconstruction and the high-order flux is the Riemann flux
from the WENO reconstruction. Specifically, MFC supports the
minmod, MC, ospre, superbee, Sweby, van Albada, or van Leer
flux limiters, each of which is a function of the volume fraction
gradient χ . Further details of our numerical implementation are
located in Meng [75].

4.3. Cylindrical coordinate considerations

MFC also supports the use of cylindrical coordinates. They are
formulated in similar fashion to (23), though with the addition
of an additional set of source terms on the right-hand-side asso-
ciated with the 1/r cylindrical terms of the divergence operator.
Our implementation was detailed by Meng [75] and does not use
an alternative treatment of the WENO weights in the azimuthal
direction, such as would be required to ensure high-order accu-
racy away from discontinuities. While such methods for this exist,
they are generally complex and suffer from numerical stability
issues [76–78]. The cylindrical coordinate treatment also requires
velocity gradients, rather than just velocities, at cell boundaries.
For this, we use a second-order-accurate finite-difference and
averaging procedure to obtain the necessary velocity gradients
at these points. Finally, the coordinate singularity at r → 0 is
treated using the method of Mohseni and Colonius [79], which
performs differentiation in the radial direction via a redefini-
tion of the radial coordinate; in our implementation, we place
the singularity at the finite-volume cell boundary (rather than
the center). We note that this implementation requires an even
number of grid cells in the azimuthal coordinate direction. A
consequence of the cylindrical coordinate system is that the grid
cells near the radial center are much smaller than those far away,
which restricts the global CFL criterion. Following Mohseni and
Colonius [79], we address this issue by using a spectral filter,
which filters the high-frequency components of the solution near
the centerline and relaxes the CFL criterion. Our implementation
was verified by Meng [75] to be second-order accurate away from
discontinuities via a propagating spherical pressure pulse, while
the construction of the viscous stress tensor was verified using
the method of manufactured solutions.

4.4. One-way acoustic wave generation

The source term s of (1) and (23) can be augmented with ad-
itional terms ss(t) for the generation of one-way acoustic waves,
or examples to model an ultrasound transducer immersed in the
low. Following Maeda and Colonius [80], these take the form

s(t) =

∫
ΩΓ (ξ, t)δ(X(ξ, t) − x)dξ (35)
Γ
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where ΩΓ is (possibly time dependent) forcing, Γ is the surface
the forcing acts upon, δ is the Dirac delta function, and X maps
the ξ coordinate to physical space x. In our numerical framework
this is represented at cell Ii,j,k as

ssi,j,k(t) =

M∑
m=1

ΩΓ (ξm, t)δh(|X(ξm, t) − xi,j,k|)∆ξm, (36)

where δh is the discrete delta function operator, ∆ξk are the sizes
of the discrete patch or line the forcing is applied to, and M are
the number of such patches. For example, in two dimensions the
one-dimensional line operator follows as

δh(h) =
1

2πσ 2 e
−

1
2

h2

σ2 , (37)

where σ = 3∆ and ∆ is the largest mesh spacing. For a single-
component, two-dimensional problem (note that there is no
volume-fraction advection equation in this case) the forcing is
expressed as

ΩΓ (t) = f (t)[1/co, cos(θ ), sin(θ ), c2o /(γ − 1)], (38)

where f (t) is the time-dependent pulse amplitude, co is the speed
of sound, and θ is the forcing direction as measured from the
first-coordinate axis.

4.5. Time integration

Once the spatial derivatives have been approximated, (23) be-
comes a semi-discrete system of ordinary differential equations in
time. We treat the temporal derivative using a Runge–Kutta time-
marching scheme for the state variables. To achieve high-order
accuracy and avoid spurious oscillations, we use the third-order-
accurate total variation diminishing scheme of Gottlieb and Shu
[53]:

q(1)
i,j,k = qn

i,j,k +∆tL(qn
i,j,k),

q(2)
i,j,k =

3
4
qn
i,j,k +

1
4
q(1)
i,j,k +

1
4
∆tL(q(1)

i,j,k), (39)

qn+1
i,j,k =

1
3
qn
i,j,k +

2
3
q(2)
i,j,k +

2
3
∆tL(q(2)

i,j,k),

where (1) and (2) are intermediate time-step stages, L represents
the right hand side of (25), and n is the time-step index. MFC
also supports Runge–Kutta schemes of orders 1–5. The time step
size ∆t is limited by the usual CFL criterion, which is propor-
tional to the mixture sound speed for the 5/6-equation models
or the sound speed associated with the hyperbolic portion of the
ensemble-averaged flow equations as defined by Ando [72] when
it is used.

4.6. Pressure-relaxation procedure

The pressure-disequilibrium model (11) requires a pressure-
relaxation procedure to converge to an equilibrium pressure. We
use the infinite-relaxation procedure of Saurel et al. [46]. At each
time step, it solves the non-relaxed hyperbolic equations (µ → 0)
using first-order-accurate explicit time step integration and a re-
initialization procedure that ensures total energy conservation
at the discrete level. After this, the disequilibrium pressures are
relaxed as µ → +∞. This procedure is performed at each Runge–
Kutta stage, and so there is a unique pressure at the end of each
stage and the 5- and 6-equation models reconstruct the same
variables. As a result, simulations of the pressure-disequilibrium
model are only modestly more expensive than the 5-equation
models (about 5% for spherical bubble collapses [55]).
5. Simulation verification and validation

We next present several test cases that validate and verify
MFC’s capabilities. These include one-, two-, and three-
dimensional cases that span a wide variety of flow problems.

5.1. Shock–bubble interaction

We first consider a Mach 1.22 shock wave impinging on a
5 cm diameter spherical helium bubble in air. This problem was
investigated via experimental methods by Haas and Sturtevant
[81] and has been previously used as a validation case for multi-
component flow simulations [82–84]. Our simulations are per-
formed using an axisymmetric configuration; further simulation
specifications can be found in Coralic and Colonius [41].

Visualizations of the shock impinging the bubble and subse-
quent breakup and vortex ring production are shown in Fig. 1.
We see that the simulation results qualitatively match those of
the experiment. Importantly, no spurious oscillations can be seen
in the numerical schlieren images, despite their sensitivity to
small density differences. We quantitatively compare our results
to the experiment by considering the velocity of key flow fea-
tures: Haas and Sturtevant [81] measured the velocity of the
incident, reflected, and transmitted shocks, as well as the up
and down-stream interfaces and jets. Our simulation results are
within 10% of the experiments for all cases and are generally
within about 5% of the experimental means. Our results are
also consistent with those computed independently via the level
set [86] and diffuse-interface methods [87], including the Kelvin–
Helmholtz instability that develops along the bubble interface
(see Fig. 1(b)–(e)).

5.2. Shock–droplet/cylinder interaction

We next consider air shocks interacting with liquid media in
two and three dimensions. These problems are more computa-
tionally challenging, primarily due to the larger density ratio.
The first case we analyze consists of a Mach 1.47 shock imping-
ing a 4.8 mm diameter liquid water cylinder. The simulation
parameterization can be found in Meng and Colonius [15].

Fig. 2 shows a visualization of experimental and our numerical
results as the shock passes over the liquid cylinder. At early times
it is difficult to assess the cylinder’s deformation, so we instead
compare the primary and secondary waves that are generated.
In Fig. 2(a) we see that the primary wave system, including the
incident and reflected shock, has the same locations for both
experimental and numerical results. The secondary wave system
is generated when the Mach stems on both sides of the cylinder
converge to the rear stagnation point; in Fig. 2(b) we see that
these also match closely.

We also consider the breakup of a spherical water droplet
due to a helium shock (Mach 0.59 observed in the post-shock
flow), following the experimental conditions of Theofanous et al.
[89]. A full exposition of the simulation conditions can be found
in Meng and Colonius [14]. Fig. 3 shows their experimental image
and volume fraction isosurfaces and sliced isocontours from our
simulations. We use a small αl = 0.01 value for the isosurface
of Fig. 3(b) for comparison purposes since images from exper-
iments are often obscured by the fine mist generated. While it
is challenging to obtain accurate timing data from the experi-
ments, a qualitative agreement between experiment and simu-
lation is still observed for the shear-induced entrainment of the

droplet.
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Fig. 1. Comparison between (i) experimental shadowgraphs of Haas and Sturtevant [81] and (ii) numerical schlieren visualizations [85] using MFC at select times
(a)–(e) as labeled. Experimental images are c⃝Cambridge University Press 1987.
Fig. 2. Comparison between (i) holographic interferograms [88] and (ii) numerical schlieren visualizations using MFC at select times (a) and (b) as labeled.
Source: The experimental images are reprinted from Igra and Takayama [88].
.3. Spherical bubble dynamics

Numerical simulation of cavitating spherical gas bubbles is
hallenging because mixture-region compressibility must be
roperly treated, discrete conservation must be enforced, and
phericity should be maintained in the presence of large density
nd pressure ratios. We consider a collapsing and rebounding
ir bubble in water at 10 times higher pressure as a test of
he capabilities of MFC. Specific simulation specifications were
resented in Schmidmayer et al. [55]; further, we include a
uided description of the simulation setup for this problem in
he example_cases/3D_sphbubcollapse directory of the MFC
ackage (see Table 1).
Fig. 4(a) shows the evolution of the bubble radius; it reaches
minimum near the nominal Rayleigh collapse time tc [90],

hen rebounds, as expected. The radius R of our simulations is
omputed from the gas volume by assuming the shape is nearly
pherical; this closely matches the solution expected following
the Keller–Miksis equation [73]. We assess and compare the qual-
ity of our simulation with ECOGEN [54] via computation of the
bubble sphericity during the collapse-rebound process. Fig. 4(b)
shows this sphericity ψ of the bubble, which is defined follow-
ing Wadell [91] and a value of 1 indicates a spherical bubble.
We see that the WENO scheme used by MFC can better maintain
sphericity than a MUSCL scheme of ECOGEN formulated for the
same diffuse-interface model [55], and is thus preferable for this
problem.

5.4. Isentropic and Taylor–Green vortices

We next consider two- and three-dimension vortex problems
as a means to verify our solutions of the flow equations. The
two-dimension problem we consider is the evolution of a steady,
inviscid, isentropic, ideal-gas vortex. This problem has been used
previously to assess the convergence properties of high-order
WENO schemes for smooth solutions to the Euler equations
Fig. 3. Comparison of (a) experimental [89] and (b) numerical water droplets isosurface αl = 0.01. (c) shows isocontours of αl ranging from 0.01 to 0.99.



S.H. Bryngelson, K. Schmidmayer, V. Coralic et al. / Computer Physics Communications 266 (2021) 107396 9
Fig. 4. Evolution of (a) the dimensionless bubble radius R and (b) its sphericity ψ . In (b) the nominal bubble shapes, represented by αl = 0.5 isosurfaces, are shown
at select times for MFC (WENO) and ECOGEN (MUSCL).
[49,92]. We use it here to verify that we obtain high-order accu-
racy away from shocks and material interfaces; details regarding
the numerical parameters and exact problem formulation can be
found in Coralic and Colonius [41].

Fig. 5(a) shows the density error for both low- and high-order
finite volume cell-averaging (following Section 4). Since the solu-
tion should be steady, the error is computed as the deviation from
the initial condition after 1 dimensionless time unit as a function
of the grid size, for which N is the number of finite volumes
in one spatial direction. The convergence is 2nd- and 5th-order
accurate for 2nd- and 4th-order-accurate cell-averaging schemes,
respectively. Thus, we conclude that for multi-dimensional prob-
lems the 4th-order-accurate cell averaging we employ is re-
quired to achieve 5th-order accuracy associated with the WENO
reconstructions.

We use the three-dimensional Taylor–Green vortex problem
of Brachet et al. [93] to study the production of small length
scales, including vortex stretching and dissipation. The simulation
parameters again follow from Coralic and Colonius [41]. Fig. 5(b)
shows the dimensionless dissipation rate of the kinetic energy
ε in dimensionless time t , as computed over the entire compu-
tational domain. We see that the vortex stretching grows until
t ≈ 5, after which the effects of viscous dissipation begin to
dominate. MFC results closely match those of the direct solution
computed by Brachet et al. [93] using spectral methods.

5.5. Further verification

MFC has been verified using several other problems, includ-
ing several one-dimensional test cases. For example, of great
importance are the development of spurious oscillations at ma-
terial interfaces, which can significantly pollute simulation qual-
ity. To determine if such oscillations appear when using our
method, Coralic and Colonius [41] considered the advection of
an isolated air–water interface at constant velocity in a periodic
domain. It was shown that when conservative variables are re-
constructed, the interface is corrupted by spurious oscillations
and the pressures can even become negative. Whereas when
primitive variables are reconstructed, their character is oscillation
free for both velocity and pressure down to round off error.

It is also challenging to predict the correct position and speed
of waves that emit from shock–interface interactions. While the
shock–bubble interaction problem considered in Section 5.1
showed that our method can approximate these quantities when
comparing to experiments, it is helpful to consider a similar
problem in one-dimension where exact solutions are available.
Following Liu et al. [28], Coralic and Colonius [41] used the
methods employed by MFC to analyze a Mach 8.96 helium shock
wave impinging an air interface. It was shown that the numer-
ical results quantitatively match the associated exact solution,
correctly identifying the position and speed of all waves in the
problem while avoiding any spurious oscillations. Of similar char-
acter is the gas–liquid shock tube problem of Cocchi et al. [94],
which has been used as a model for underwater explosions. For
this, Coralic and Colonius [41] also showed that the numerical so-
lution matches the exact one and correctly identifies the position
and speed of all waves.

Finally, the ensemble-averaged bubbly flow model introduced
in Section 3.3 was verified by simulating a weak acoustic pulse
impinging a dilute bubble screen and comparing to the linearized
bubble dynamic results of Commander and Prosperetti [95]. We
saw that the measured phase speed and acoustic attenuation,
computed via the method of Ando [72] and Bryngelson et al. [69],
match the expected results. Further, Bryngelson et al. [69] showed
that this method quantitatively matches the volume-averaged
formulation of the same problem [96,97].

6. Illustrative examples

6.1. Shock–bubble dynamics in a vessel phantom

We demonstrate the capabilities of MFC by first consider-
ing the shock-induced collapse of a gas bubble inside a de-
formable vessel. This is closely related to the vascular injury that
can occur during shock-wave lithotripsy treatments [41,98]. This
problem is particularly challenging because it involves large
density-, pressure-, and viscosity-ratios as well as components
with significantly different equation of state parameters. Specif-
ically, we consider a 20 µm diameter air bubble centered in a
26 µm diameter cylindrical vessel filled with water and sur-
rounded by 10% gelatin (see Fig. 6(a)). The problem is initialized
via a 40 MPa shock wave impinging the side of the vessel. Details
on the specific numerical setup can be found in Coralic [99].

We visualize the bubble dynamics and subsequent impinge-
ment and deformation of the vessel in Fig. 6. We see that by t =

39 ns the bubble shape is asymmetric and the vessel contracts
due to the incoming shock, after t = 46 ns the bubble surface
has gained an inflection point and by t = 66 ns it impinges the
vessel surface and becomes mushroom-shaped. Importantly, all
surfaces remain smooth and free of spurious oscillations, despite
the large density- and viscosity-ratios.

6.2. Vocalizing humpback whales

We next demonstrate the utility, flexibility, and robustness
of the ensemble-averaged bubbly flow model described in Sec-
tion 3.3. For this, we model the humpback whale bubble-net
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Fig. 5. (a) L∞ density error associated with an isentropic steady vortex for the cell-averaged scheme accuracy labeled. (b) Non-dimensional kinetic energy dissipation
rate ε associated with the three-dimensional Taylor–Green vortex problem; the MFC solution is compared to the direct spectral solution of Brachet et al. [93].
Fig. 6. Temporal snapshots (a)–(d) that show the bubble collapse and vessel wall deformation. The shock impinges the vessel from right to left. The bubble and
vessel walls are illustrated via their 0.5 volume-fraction isosurfaces.
feeding process [100], as described in Bryngelson and Colonius
[101]. Specifically, multiple humpback whales vocalize towards
an annular bubbly region called a bubble net, which is modeled
using the acoustic source terms of Section 4.4 and bubbly regions
described using the phase-averaged model.

We show the acoustics associated with the periodic excitation
f the bubble net in Fig. 7 for both two- and three-dimensional
onfigurations. In both cases, we see that the impedance asso-
iated with the relatively dilute bubble net (void fraction 10−4)
effectively shields the core region from the vocalizations. Indeed,
it is anticipated that the whales use their nets as a tool for
corralling their prey into this relatively quiet, compact region. We
also see that the curved material interfaces remain smooth and
free of spurious oscillations.

Fig. 7. Visualizations of four model humpback whales vocalizing towards an
annular bubble net in (a) three- and (b) two-dimensions. The acoustics are
shown via isocontours of pressure and the annular bubble net is shaded.
7. Parallel performance benchmarks

It is important to ensure that our parallel implementation
can utilize modern, large computer resources. To do this, we
benchmark MFC’s parallel architecture via the usual scaling and
speedup tests. These tests were carried out using 288 compute
nodes, each containing two 2.6 GHz six-core AMD Opteron pro-
cessors.

Fig. 8 shows parallel performance benchmarks of MFC. The
strong scaling test of Fig. 8(a) measures how the solution time
varies for a fixed problem size as the number of computing cores
varies, the weak scaling test (Fig. 8(b)) measures how well the
computational load is balanced across the available cores by mea-
suring solution time while fixing the grid size distributed to each
core and varying the number of cores (thus changing the overall
problem size), and the speedup test (Fig. 8(c)) measures how the
solution time increases with respect to serial computation as the
number of cores varies. Thus, speedup is defined by the ratio
of time cost of a parallel simulation with a certain of cores to
a serial computation. The strong scaling and speedup tests are
carried out on a 5003 grid, while a constant load of 503 cells per
core is maintained during the weak scaling test. For all tests, MFC
performs very near the ideal threshold until the number of cores
is 4096, at which point the results deviate slightly from ideal.

8. Conclusions

We presented MFC, an open-source tool capable of simu-
lating multi-component, multi-phase, and multi-scale flows. It
uses state-of-the-art diffuse-interface models, coupled with high-
order interface-capturing and Riemann solvers, to represent
multi-material dynamics. MFC includes a variety of flow models
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Fig. 8. MFC performance benchmarks: (a) strong scaling, (b) weak scaling, and (c) speedup tests.
and numerical methods, including spatial and temporal orders
of accuracy, that are useful when considering the computational
requirements of challenging open problems. It also includes op-
tions for additional physics and modeling techniques, including a
sub-grid ensemble-averaged bubbly flow model.

We also described the requirements to build MFC and its
design. This included external open-source software libraries that
are readily available online. MFC was divided into three main
components that initialize and simulate the flow, then process the
exported simulation data. Each of these components is modular,
and thus can be readily modified by new developers. They are
coupled together via an intuitive input Python script that auto-
matically generates the required Fortran input files and executes
the software component. The exported simulation files can be
readily analyzed or treated via parallel post-processing.

Finally, we presented a comprehensive set of validations,
verifications, and illustrative examples. Validation was performed
via comparisons to expected bubble dynamics and shock–bubble,
shock–droplet, shock–water–cylinder experiments, while verifi-
cation was obtained via numerical experiments involving isen-
tropic and Taylor–Green vortices, as well as advected- and
interface-interaction problems. The capabilities and fidelity of
MFC were also illustrated using challenging studies of shock–
bubble–viscous-vessel-wall interaction in application to shock-
wave lithotripsy and acoustic-bubble-net dynamics in
application to feeding humpback whales. A set of performance
benchmarks also showed that MFC was able to perform near the
ideal threshold of parallel computational efficiency.
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