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Closure of phase-averaged bubbly, cavitating flow models
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Summary Phase-averaged bubbly flow models are closed by high-order statistical moments of the disperse bubble dynamics. Evaluating
these moments in a simulation environment is computationally expensive because the integrands are highly oscillatory. The cost of this
closure is demonstrated for an ensemble-averaged bubbly flow model. A machine-learning-based method for accelerating the moment
evaluation is formulated.

INTRODUCTION

Bubble cloud dynamics play a central role in phenomena ranging from blast trauma injury1 to kidney stone pulveriza-
tion.2 When the size distributions of bubble nuclei are broad, the average response of the bubbles to pressure fluctuations
damps and disperses.3 Bubbly flow models must account for such size distributions if they are to represent the dynamics of
realistic bubbly flows.

PHASE-AVERAGING

Phase-averaged computational methods can represent the interaction between polydisperse bubble clouds and the
flow that stimulates them. Current methods utilize either ensemble- or volume-averaging. Volume-averaging,4 shown in
figure 1 (left), represents bubbles as Lagrangian features that advect and evolve according to an assumed bubble dynamics
model (e.g. Rayleigh–Plesset). The bubble population, sampled from an equilibrium bubble radius distribution, couples to
the suspending liquid via a volumetric smoothing operator. Figure 1 (right) shows ensemble averaging.5 It represents the
bubble population as an evolving probability distribution, again according to a bubble dynamics model, in the equilibrium
bubble size space on the Eulerian grid. The bubble population moments couple to the mixture-averaged flow equations and
advect via a transport equation.
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Figure 1: Schematic illustration of phase averaged methods.

Ensemble averaging is computationally cheaper than volume averaging when the bubble population is not significantly
polydisperse.6 However, ensemble averaging methods often approximate the required moments via classes methods.
These methods bin and evolve the underlying probability density function. While simple, this approach is computational
expensive for broad bubble size distributions. Our goal is to accelerate ensemble-averaged methods for polydisperse cases
via a moment-based method.

CLOSURE VIA MOMENT METHODS

Statistical moments often more efficiently represent distributions than bins. Evolution of such moments follow from
a population balance equation. This technique has been used to model polydisperse bubbly flows, though has not been
applied to cavitating bubble populations, which undergo large volume changes. The moment evolution equations are not
a function of only lower order moments when the bubble dynamics are nonlinear. Quadrature-based moment methods7

can address this issue, though computing high-order moments with them is expensive. Instead, we use a Gaussian closure
method. For this, a specific moments {l,m} is

µlm =

∫
RlṘmP (~x, ~θ) d~x (1)
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Figure 2: First- and second-order moment model errors. PDF and ML correspond to the Gaussian closure and neural network augmented
methods, respectively.

where ~x ≡ {R, Ṙ} are the internal coordinates and ~θ are the shape parameters of the probability density function P (e.g.
the means and variances). The moment system evolves as

∂µlm

∂t
= lµl−1,m+1 +m

∫
R̈(~x)RlṘm−1P (~x, ~θ) d~x. (2)

The integral term of (2) is closed by assuming P is a bivariate Gaussian density function and that the Rayleigh–Plesset
equation represents the bubble dynamics R̈ with driving pressure ratio po/p∞. The moment system (2) is five dimensional
because P has only two shape parameters. This is significantly smaller than the hundreds of bins that significantly
polydisperse populations require.6

Figure 2 shows that the model error ε is small for all moments when the driving pressure ratio approaches unity. This
is because the dynamics are linear in this limit and the Gaussian closure is exact. However, for lower pressure ratios the
bubble dynamics are more violent and model errors are significant (figure 2 PDF, filled symbols). This model deficiency
results from high-order moment development, which Gaussian closure does not represent. To treat this issue, we train a
long short-term memory (LSTM) recurrent neural network (RNN) to augment the low-order moment evolution equation (2).
Figure 2 (ML) shows that this significantly decreases the model error for validation cases at low pressure ratios.
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Figure 3: Model errors for the phase-averaged-model required moments.

Ensemble-averaged models require four high-order moments of the evolving population. Assuming Gaussian closure
for P is sufficient to evaluate these, though figure 3 (PDF) shows that this again results in significant errors for low pressure
ratios, even if the low-order moments are accurate. This is because the statistics are non-Gaussian in this regime. To treat
this, we train another LSTM RNN to correct these moments. Figure 3 shows that this again significantly reduces the model
errors, particularly for low pressure ratios.
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