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Elastic capsules flowing in small enough tubes, such as red blood cells in capillaries, are
well known to line up into regular single-file trains. The stability of such trains in somewhat
wider channels, where this organization is not observed, is studied in a two-dimensional
model system that includes full coupling between the viscous flow and suspended capsules.
A diverse set of linearly amplifying disturbances, both long-time asymptotic (modal) and
transient (nonmodal) perturbations, is identified and analyzed. These have a range of
amplification rates and their corresponding forms are wavelike, typically dominated by
one of five principal perturbation classes: longitudinal and transverse translations, tilts,
and symmetric and asymmetric shape distortions. Finite-amplitude transiently amplifying
perturbations are shown to provide a mechanism that can bypass slower asymptotic modal
linear growth and precipitate the onset of nonlinear effects. Direct numerical simulations
are used to verify the linear analysis and track the subsequent transition of the regular
capsule trains into an apparently chaotic flow.
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I. INTRODUCTION

Red blood cells or similar elastic capsules suspended in sufficiently small vessels or tubes are well
known to flow in single-file trains down the center of the vessel, each assuming a bullet-like [1,2]
or sometimes asymmetric slipper-like [3–7] shape. Such a regular formation would seem viable in
larger tubes or vessels, yet this is not observed for long times, presumably because it is unstable. What
is observed instead is a significantly disturbed flow, in which capsules or blood cells appear to flow
chaotically relative to each other in addition to their predominantly streamwise advection [2,8–10].
This empirical behavior has been reproduced in detailed numerical simulations [11–14], such as
those visualized in Fig. 1. It is well known that purely viscous flows can display chaotic streamlines,
such as in two-dimensional mixing configurations [15,16] and certain three-dimensional bounded
flows [17–19]. Further, viscous N -body systems can also display chaos. A free-space Stokeslet
model suggests that N = 3 is sufficient [20] and chaos has indeed been observed for three rigid
spheres suspended within a rotating cylinder [21]. So it is not surprising that this transition can
occur; we consider specifically when and how it manifests for flexible capsules in a model channel.

The source of this instability is unknown, particularly in how it might be affected by capsule
properties or flow configurations, which can be altered, for example, by disease in red blood cells.
In addition to the basic role of blood cells in transport through the microcirculation [22,23], many
important microcirculatory flows are potentially sensitive to this change in character: the cell-free
layers that form near vessel walls [24–26], the margination of leukocytes or platelets [27–31],
intravenous drug delivery of particles and capsules for which both cross-stream transport and the
thickness of the near-wall cell-free layer can be important [32], the hemodynamic forces that mediate
angiogenesis [33] and development [32,34,35], and tumor growth in cancer [36]. Capsule-train
stability is potentially even more important for microfluidic devices designed to manipulate the
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FIG. 1. Empirical stability example for red blood cells using methods of Zhao et al. [11]: (a) stable and
(b) unstable. Both configurations were equally perturbed, but the N = 8 cell train in (a) seems to persist
indefinitely, whereas the more dense N = 12 case in (b) undergoes a rapid transition. This shows a sensitivity
to packing fraction in addition to diameter sensitivity discussed in the text.

flow of cells or engineered capsules in order to perform sorting or other processing [37–42]. In such
devices, it is seemingly easiest to develop processing procedures that operate on ordered trains rather
than chaotic and disperse arrangements.

We focus on the character of the transition between the orderly flow, typically seen in the
narrowest tubes or vessels [1,43], and its apparently chaotic counterpart, typically seen in less
confined configurations [44,45]. Our goal is to identify factors mediating its transition, the rate
at which disturbances amplify, and the character of the most-amplifying disturbances. A two-
dimensional flow of uniformly spaced capsules, which empirically displays this threshold behavior,
is analyzed as a model system. While there is no expectation that this model provides a quantitative
description of any particular three-dimensional configuration, such as true blood cells, it is more
amenable to extensive analysis. We will see that it displays a rich range of behaviors that are
suggestive of the potential diverse behaviors possible in similar systems. The specific configuration
is introduced in Sec. II. The numerical methods used both for constructing the linearization and for
the corresponding direct numerical simulations (DNSs) are summarized in Sec. III.

To analyze stability of the capsule trains, both eigensystem and singular-value analyses of
the linearized system are use to predict the asymptotic and transient behaviors of perturbations,
respectively. The formulation for this is outlined in Sec. IV, following a similar approach to that
used to analyze shear-flow instability at larger Reynolds numbers [46–49]. Here these methods are
adapted to the fluid-structure coupled system in the viscous-flow limit. Direct numerical simulations
for specific cases confirm both the predicted transient and asymptotic amplification rates and show
the subsequent nonlinear evolution of the system away from the ordered configuration.

The present analysis is in the same spirit as stability analyses of settling lines of spheres in free
space [50,51] or near a wall [52], which is analytically tractable in the limit of infinitesimal spheres,
though often by neglecting interactions beyond nearest neighbors. While similar in character to
these simpler configurations, the present study includes all viscous-flow interactions, including the
coupled elastic stresses in the deformable capsule membranes. This complexity necessitates some
reliance upon numerical methods, though the stability results themselves are relatively clear. Similar
nonmodal stability analysis has been used to study rheologically complex flows [53], but does not
appear to have been used to analyze the behavior of confined particle suspensions, such as that
which we consider here with flexible capsules. Observational studies of one-dimensional droplet
arrays have also been conducted that display some superficial similarities to our study of elastic
capsules [54–56]; however, it appears that fundamental differences between droplets and capsules,
specifically, the presence of an elastic membrane, seemingly limit a qualitative connection [57].

Amplification rates and corresponding most-amplifying disturbances for relatively wide and
narrow channels with both large and small capsule-packing fractions are summarized in Sec. V.
These perturbations are examined in regard to the transition to nonlinear behavior in Sec. VI,
which includes DNSs of their evolution into an apparently chaotic flow. Small disturbances that
are particularly subject to transient growth—the nominally “most dangerous” disturbances often
discussed for boundary layers [58–60]—are shown to lead to nonlinearity and chaos as much as
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FIG. 2. (a) Schematic of the model channel flow with mean flow U containing N capsules of area A =
πr2

0 and perimeter l0 = 1.6 × 2πr0. (b) Empirically stable single-file train in a narrow W = 4r0 channel,
(b) empirically unstable train in a W = 10r0 channel, and (d) transition of (c) into an apparently chaotic flow.

1000 times faster than the most asymptotically unstable disturbance. For efficient design of devices
and methods that maintain organization by avoiding instabilities, it is essential to consider such
disturbances, as has also been recognized in other flows [61–65]. Ad hoc random perturbations of the
same displacement amplitude grow much more slowly, suggesting that the specific most-amplifying
disturbances are of principal importance. Capsule-train stability is shown to be sensitive to capsule
flexibility in Sec. VII, where we also investigate the deformation energy that accompanies the
different disturbances.

II. MODEL MICROCHANNEL

The model capsule-flow system is shown in Fig. 2. A streamwise-periodic channel of length L

and width W contains N capsules suspended in a viscosity μ Newtonian fluid flowing with mean
speed U . Each capsule has area A = πr2

0 and a zero-stress perimeter l0 = 1.6 × 2πr0 such that
its biconcave equilibrium geometry is similar to the cross section of a resting red blood cell. The
capsules are initialized in their at-rest equilibrium geometry and uniformly spaced along the channel
centerline in a one-dimensional train with packing fraction

φ ≡ Nr0

L
, (1)

which is varied from dilute φ = 0.2 to nearly jammed φ = 0.7. Most results are presented for the
relatively narrow W = 10r0 and wide W = 40r0 channels visualized in Fig. 3. Channel lengths are
varied from L = 10r0 to 500r0, with the number of capsules correspondingly varied from N = 2 to
100. Results will show that an apparent asymptotic large-L behavior is achieved for N � 20, which
motivates particular focus on cases with N = 30. We restrict our investigation to this ordered and
regular capsule train, such as that which might be generated by more narrowly confining upstream
geometries. No attempt is made to identify stable states that might exist in wide channels, such as
those apparently seen in some staggered arrays of immiscible droplets [54].

Each capsule is defined as an elastic shell that resists tension and bending with linear moduli T
and M, respectively. Thus, for arc-length coordinate s(s0) and stress-free reference coordinate s0,
the membrane tension τ and bending moment b are

τ = T
(

ds

ds0
− 1

)
, b = Mκ, (2)
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FIG. 3. Base configurations: (a) φ = 0.2 and W = 10r0, (b) φ = 0.7 and W = 10r0, (c) φ = 0.2 and
W = 40r0, and (d) φ = 0.7 and W = 40r0.

where κ is the curvature. Though these are linear relations, we emphasize that the net traction on the
fluid due to the capsule membranes includes all geometric nonlinearity as

�σ = ∂tτ
∂s

+ ∂

∂s

(
∂b

∂s
n
)

, (3)

where t is the membrane unit tangent and n is its outward directed unit normal. We note that this
specific model has been used in previous capsule model systems [28,66]. Although it neglects some
nonlinear contributions to the full Helfrich strain energy [67], results have confirmed that these terms
are unimportant in flows with still more significant strains [66].

Matching the suspending fluid, the fluid within the capsules is also taken to be Newtonian with
viscosity μ. Red blood cells are thought to have an elevated cytosol viscosity [68,69], though it has
been shown that a matched viscosity model reproduces phenomena in two dimensions [28,66,70] and
provides quantitative agreement for the suspension effective viscosity in three dimensions [3,44].
This simplification has reproduced many of the qualitative features of actual red-blood-cell flow in
three dimensions, including the Fåhraeus-Lindqvist effect, the margination of larger stiffer capsules,
the blunted mean velocity profile, and the nonmonotonic dependence of the effective viscosity on
vessel size [44,71].

The relative flexibility of the capsules is quantified with a capillary-number-like parameter

Ca ≡ μUr2
0

M , (4)

which can be interpreted as the ratio of a capsule relaxation time to advection time. For most results,
we take Ca = 15.2; the relative importance of flexibility this parametrizes is investigated in Sec. VII.
The tension modulus is relatively large compared to the bending modulus

r2
0T
M = 50, (5)

which provides a large tensile stiffness to model the near incompressibility of many capsule
membranes. Baseline configurations are obtained by simulating the flow without perturbations
for time t = 5r0μ/T , which is sufficient for the capsules to each assume the steady flow-deformed
geometries shown in Fig. 3.

III. NUMERICAL METHODS

The Reynolds numbers of cell-scale blood flow, or similar capsule suspensions in microfluidic
devices, are small Re � 0.01 [3], so inertia is neglected in the present study, which enables a
boundary integral formulation of the flow equations [72,73]. To evaluate velocities, we use the same
particle-mesh-Ewald algorithm generalized for Stokes flow [74] as used in previous studies [28,66].
It is built upon periodic-space Green’s functions [75], with the no-slip condition at the channel walls
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enforced via a penalty method [28]. Consistent with the neglect of fluid inertia, the mass of the capsule
membranes is likewise neglected. As such, the membrane position x(t) is simply advected as [3]

dx
dt

= u[x(t)], (6)

where u(x) is the local velocity calculated from the boundary integral equation. The time dependence
of u comes only through the membrane geometry x(t). Although the constitutive model and viscous
flow equations are themselves linear, in considering (6) it is important to recognize that u(x)
still includes nonlinearities associated with the geometric factors contributing to the surface
tractions (3). These expressions are evaluated numerically using Fourier methods [28], with each
capsule discretized by n = 25 collocation points except when noted. The full list of M = nN total
collocation points is represented by the notation �x ≡ {x(1)

1 ,x
(1)
2 , . . . ,x

(M)
2 }. Nonlinear operations are

computed with four times this amount to counter aliasing errors [3,11]. A second-order Runge-Kutta
scheme is used to integrate (6) in time, which is crafted for the collocation points as

d�x
dt

= �u(�x) or equivalently
dx

(α)
i

dt
= u

(α)
i (�x) for i = 1,2; α = 1, . . . ,M, (7)

with time step �t = 0.001μr0/T .
As they evolve and interact, capsules can come into near contact. Although the boundary

integral formulation is unrestricted in this regard by any underlying volume (area) filling mesh
discretization, accumulation of even small numerical errors can lead to erroneous interactions
between nearby capsules, particularly if the intercapsule spacing becomes comparable to the capsule
surface collocation point spacing. In the long DNSs of subsequent behavior, this is countered by
introducing a regularizing short-range repulsion between membrane collocation points. We employ
the same formulation as past efforts [28,66], with forces zero beyond the distance 0.2r0. However,
this force is not part of the stability analysis, so the principal results of this study are wholly
independent of it.

Similarly, in the course of long simulations the area of the capsules can also change via the
accumulation of small numerical errors, though this happens slowly since the area is a low-order
moment of the capsule shape and therefore well resolved. Still, a weak variational correction is used
to preserve constant capsule areas indefinitely [28]. This also is only included for the DNSs, so the
stability results are likewise independent of it.

IV. STABILITY ANALYSIS FORMULATION

A. Measure of configurational stability

Since our goal is to describe the geometric disruption of capsule trains, the measure describing
the growth of instabilities is based on the membrane displacement from its unperturbed uniformly
advecting baseline configuration. For perturbations applied at time t = 0, this is

ε(t) = x(t) − xb(t), (8)

where xb(t) represents the corresponding unperturbed case described in Sec. II. The overall
disturbance amplitude is quantified by

‖ε‖ =
∫

all C

(ε · ε)1/2dl, (9)

where C are the capsule membranes. This measure is not unique and no unique measure is expected
to exist for so complex a system [47], though it is appropriate for our objectives since x fully describes
the system state and ε directly describes the geometric disruption we study. In essence, it matches
the corresponding metrics used previously for the stability of settling spheres [50,52]. This measure
obviously does not correspond to a mechanical energy, as is available for finite-Reynolds-number
incompressible fluid flow and thus lacks the additional conservation properties such an energy-based
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measure would embody. The capsules do store strain energy, but any measure that includes it would
also introduce an additional challenge in that strain energy is invariant to capsule translation or rigid-
body rotation. Such constant-energy perturbations, which we anticipate might be hydrodynamically
important for seeding instabilities (and indeed are in cases), do not correspondingly perturb the strain
energy. Thus, we do need to be mindful that equal ‖ε‖ disturbances do not necessarily correspond
to equal mechanical energies. This is revisited in Sec. VII, where the elastic energies corresponding
to most amplifying perturbations are considered.

B. Linearization

Since �u(�x) couples all the capsule and wall collocation points, which therefore includes significant
nonlinearity due to geometric factors, direct linearization of (7) is challenging. However, it is
straightforward and equally effective to construct a corresponding linearized system through
numerical evaluation of u(x) in Eq. (7). Expanding (7) for small positional perturbation �δ yields

∂(�x + �δ)

∂t
= �u(�x + �δ) = ∂�x

∂t
+ A(�x)�δ + O(‖�δ‖2), (10)

where A thus includes the first-order coupling for the present �x configuration due to perturbation
�δ. In practice, this is constructed by systematically perturbing the system and evaluating the
velocity. Specifically, each column of A is calculated by perturbing one of the collocation points
α ∈ {1, . . . ,M} in one of the coordinate directions i ∈ {1,2} and calculating �u(�x + �δ). Since only
the (i,α) component of the 2M-length vector list �δ in Eq. (10) is perturbed (by δ),

δ
(β)
j =

{
δ for j = i, β = α

0 otherwise, (11)

which provides the i-α column of A as

A
(αβ)
ij = u

(β)
j (�x + �δ) − u

(β)
j (�x)

δ
for j = 1,2; β = 1, . . . ,M. (12)

Repeating this for all collocation points and both coordinate directions yields all columns of A. The
translation of the baseline train of capsules due to the mean flow is common to the perturbed and
unperturbed �u in Eq. (12), so it does not contribute to A. It is confirmed that results are independent
of the δ = 10−5r0 used here.

Generating the full 2M × 2M matrix A in this way requires about the same computational effort
as 2M numerical time steps of the flow solver and would be prohibitive in many numerical flow
solutions. For the particular configurations we consider, periodicity of the domain and the identical
character of all the capsules can be exploited to reduce this to 2M/N . An advantage of the boundary
integral discretization is that only the surfaces of the capsules are discretized, so this is not an
insurmountable calculation. The use of high-resolution Fourier methods further reduces the number
of points necessary to accurately represent the membranes and thus describe the stability through A.
The largest case presented here has 2M = 105, which is comparable to the number of time steps of
a typical direct numerical simulation of this system.

With A, the evolution of any sufficiently small perturbation �ε is governed by the linear system

∂�ε
∂t

= A�ε, (13)

with the matrix-exponential solution

�ε(t) = �ε0 exp At (14)

for the initial condition �ε(0) = �ε0. The exp At factor thus describes its temporal behavior.
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FIG. 4. Eigenvalues of A for W = 40r0 and φ = 0.7 with N = 20 capsules.

C. Eigensystem

The matrix A is real and nonnormal (AAT �= ATA), as can be anticipated by the character of the
vector Green’s function of the Stokes operator, so in general it will not have a full set of orthogonal
eigenvectors. Eigenvalues for a typical configuration are shown in Fig. 4. Nearly all of their real
components are negative, as expected for a predominantly viscous system, though 75 of the 1000
total in this example do have positive real components, indicating asymptotic instability. The most
amplifying is real valued and corresponds to a tilting perturbation, which we analyze subsequently.

Though it is not diagonalizable, the eigensystem of A does dictate the t → ∞ behavior of small
perturbations, so long as they do not trigger significant nonlinear interactions before this behavior
is realized [46]. Here we consider its behavior for this reason, in addition to using it as a point of
reference with respect to predicted transient growth, which we consider in the following subsection.
With �λ(A) representing the 2M eigenvalues of A, the nominal spectral abscissa of the system is its
most-amplifying component

α ≡ max{Re[�λ(A)]}. (15)

The corresponding most-amplified eigenvalue and its associated eigenvector are defined as λα and
�sα , respectively. For t → ∞, an initial perturbation ε(0) = ε̂sα will evolve as

ε(t) = ε̂sα exp λαt. (16)

D. Nonmodal analysis

Following a common reasoning [47,76], a t → 0+ amplification bound is defined by the
numerical abscissa

η ≡ max

{
Re

[
�λ
(

A + AT

2

)]}
, (17)

which recovers η = α for normal A. This is the maximum initial amplification of any perturbation,
though this growth rate will not necessarily persist.

In addition to the short-time growth rate, of particular interest is the form of the most-amplifying
perturbation and the most dangerous growth at later times. This is determined from a singular-value
decomposition

exp At = U�VT, (18)

where the ordered singular values �σ (t) form the diagonal matrix �, and U and V are matrices
constructed of orthonormal left and right singular vectors, respectively. Though non-normality
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FIG. 5. Perturbation amplification in time: curve A, transient growth based on maximum time-dependent
amplification ζ (t) from (20) for initial perturbation ε̂�vη; curve B, direct evaluation of the matrix exponential
exp At from (14) for ε̂�vη, which matches curve C from the corresponding DNS; and curve D, exp αt for ε̂�sα

from (16), which matches the large t behavior of curve E from the corresponding DNS.

couples the linear disturbances, their maximum time-dependent evolution can be tracked by
reevaluating (18) as a function of time,

G(t) ≡ ‖ exp At‖ = max
j,β

σ
(β)
j (t). (19)

The corresponding instantaneous maximum growth rate is then

ζ (t) ≡ d ln G(t)

dt
. (20)

For t → ∞ this should converge to the eigenvalue associated with the least stable eigenvalue
ζ → α and for t → 0+ it converges to the maximum transient amplification ζ → η. If ζ (t) > α for
any range of t , transient growth can outpace asymptotic eigensystem growth in that range.

E. Character and verification of the linear system

The construction of A and its analysis is intricate, so it is important to verify that it indeed
represents a linearization of the full system. This also serves to introduce the basic behavior we will
see in most of the results. For verification, linear predictions based on A are compared with full
DNS calculations for small perturbations. For φ = 0.2 and W = 10r0, we compare the predicted
growth of ‖�ε‖ for ε̂ = 10−10r0 perturbations against the DNS for different initial conditions. Before
nonlinear effects manifest, which is avoided with ε̂ so small, agreement should be limited only
by the accumulation of numerical approximation errors. For numerical evaluation, ‖ε‖ from (9) is
approximated as

‖�ε‖ = 1

M

M∑
i=1

√[
ε

(i)
x

]2 + [
ε

(i)
y

]2
. (21)

Two main verification comparisons are made in Fig. 5. For the initial perturbation ε̂�vη, the
predicted cumulative amplification based on ‖ exp At‖ is compared with the corresponding DNS
and shown to agree (curves B and C). We also see that both match the t → 0+ prediction based
upon ζ (t → 0) and that for t > 0 they are indeed bounded by this. The second comparison is for
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FIG. 6. Evolving maximum growth rate ζ (t) analyzed in Fig. 5.

the t → ∞ behavior, based on α for the initial condition ε̂�sα and a corresponding DNS. These also
agree (curves D and E in the figure) in that they overlap at long times, with a relative amplification
difference less than 5% at t = 10r0μ/T and less than 2% at t = 100r0μ/T . Note that their good
agreement at all times, not just for t → ∞, indicates that in this case �sα itself is not strongly coupled
with other linear disturbances.

In Fig. 6 we see that at short times ζ (t) significantly exceeds α, confirming the small-t behavior of
Fig. 5. At later times, we likewise confirm that ζ → α, as it should. Despite the long-time behavior,
we anticipate that for finite perturbations, the rapid transient growth might be a significant mechanism
leading to nonlinear saturation and subsequent disruption of the capsule train. This is considered in
Sec. VI. In the following section we examine the character of the most-amplifying disturbances.

V. STABILITY RESULTS

We consider transient amplification in Sec. V A and long-time asymptotic amplification in
Sec. V B for the four base flows visualized Fig. 3. Additional configurations are introduced in
Sec. V C to map the boundaries between different disturbance-form regimes. The narrow channels of
these configurations are insufficient to preserve the regularity of the capsule trains, so for comparison
we also introduce a very narrow channel with W = 4r0 in Sec. V D. In this case, the capsule train
persists, seemingly indefinitely, and we characterize its apparent stability.

A. Transient amplification

Figure 7 shows the initial transient amplifications η from (17). In all four cases, η depends, at
least weakly, upon the channel length, with an apparent asymptotic long-L power-law behavior for
sufficiently large L. For all cases, the power laws provide good fits for N � 20 capsules, suggesting
that in this limit the discrete character of the capsules per se becomes relatively unimportant, as
might be expected for 20 capsules per wavelength of the disturbances. An implication is that an
effective medium model and continuous dispersion relation might afford a reasonable description
of the response, though we do not pursue this here. The apparent noninteger power laws in Fig. 7
suggests the existence of an anomalous dimension [77], though its specific form has not been found.

For both φ and larger L, the narrow channels are significantly more amplifying. However, this
behavior is different in shorter channels. For small L, the proximity of the walls appears to be less
important and we see about a factor of 5 more significant transient amplification for the more densely
packed channels, irrespective of width, suggesting that capsule-capsule interactions themselves are
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FIG. 7. Numerical abscissa η from (17) for different lengths L for the channels of Fig. 3. The straight lines
are power-law fits.

most important in this limit. Still, the amplification rates for shorter channels are much smaller than
those in most of the longer channels.

With such different behavior in the amplification rates, it is not surprising that the corresponding
t → 0+ most-amplifying disturbances visualized in Fig. 8 show diverse structures. The φ = 0.2
wide-channel case visualized in Fig. 8(b) shows a longitudinal displacement wave, with each

BA

(a)
A B

A

(b)
A

A B

(c)
A B

A B

(d)
A B

FIG. 8. Most transiently amplifying (nonmodal) disturbances for the baseline cases with N = 30 of Fig. 3:
baseline �x (dashed line) and perturbations visualized as �x + aε̂�vη (solid line) with aε̂ = 3.5: (a) φ = 0.2 and
W = 10r0, asymmetric deformation; (b) φ = 0.2 and W = 40r0, longitudinal translation; (c) φ = 0.7 and
W = 10r0, asymmetric deformation; and (d) φ = 0.7 and W = 40r0, symmetric deformation. These relatively
large amplitudes aid visualization, though some of the features appear exceptionally sharp due to geometric
nonlinearity. The A and B labels indicate the specific magnified capsules.
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capsule displaced in the streamwise direction without an obvious change of shape. As such, the
overall disturbance appears as a compression-expansion wave of the capsule spacing. The other
disturbances visualized in Figs. 8(a), 8(c), and 8(d) appear primarily as distortions of individual
capsules; although consistent with the L dependences of Fig. 7, these also manifest as wavelike
perturbations correlated across all the capsules. They are asymmetric for the narrow channels in
Figs. 8(a) and 8(c) and symmetric in Fig. 8(d). Similar long-wavelength disturbances are most
amplifying for capillary instability of low-Reynolds-number core-annular flows [78,79], though
we do not pursue any possible correspondence to this configuration herein. We note that such
disturbances that distort individual capsules are hard to visualize. For genuinely small ε̂, for which
the linear approximation is quantitatively accurate, they would be imperceptible if plotted as �x + ε̂�vη.
For visualization, they are therefore artificially increased by a factor a as �x + aε̂�vη, which makes
them visible but unfortunately also distorts their shapes, which leads to a kinky appearance due
to geometric nonlinearities. These visualizations should be construed as showing the approximate
direction and relative amplitude of the membrane perturbation, not strictly the membrane shape.

Motivated by these visualizations, we quantify the disturbances with low-order moments of each
capsule shape C. These are selected to emphasize their main apparent characteristics:

xc = 1

l0

∫
C

εxdl, (22)

yc = 1

l0

∫
C

εydl, (23)

Mx = 1

l0r
2
0

∫
C

ε3
xdl, (24)

My = 1

l0r
2
0

∫
C

ε3
ydl, (25)

Mxy = 1

l0r0

∫
C

εxεydl, (26)

where x is the streamwise and y is the cross-stream coordinate, as labeled in Fig. 2. Third-order
rather than second-order moments are used for Mx and My to preserve the sign of the perturbation.
The relative values of (22)–(26) are plotted for all capsules in Fig. 9. These confirm the predominance
of particular moment contributions for the different cases, as might be anticipated from the
visualizations. Their wavelike character again suggests that a continuum model might afford a
natural way to analyze the behavior of the dominant transient disturbance (and its asymptotic
analog; see Fig. 12) if an effective material model or averaging procedure could be deduced. This is
not attempted here.

B. Asymptotic amplification

The maximum asymptotic amplification rates α, corresponding to the same four cases of Fig. 3,
are shown in Fig. 10. These growth rates are all slower than the corresponding η, typically by over a
factor of 10. Again, for sufficiently long L, the more-narrow channels also show length dependence,
though with different powers than for η. However, the wider channels do not, at least for up to the
100 capsules considered. This is true even when the channel length is many times its width. The
more-narrow W = 10r0 channels are most amplifying for all L. For φ = 0.2, its L dependence is
similar to the transient behavior η ∼ L2, though for φ = 0.7 it is less sensitive to L, with α ∼ L3/4

rather than matching η ∼ L2.
Given these diverse asymptotic amplification rates, we again anticipate different characters for

the corresponding disturbances visualized in Fig. 11. Both wide channels [Figs. 11(b) and 11(d)]
show a predominantly tilting disturbance, in which all the capsules collectively tilt. The uniformity
of this tilt rate is confirmed to be Mxy dominant in Figs. 12(b) and 12(d). Their lack of a streamwise
wavelike structure (constant Mxy) is consistent with the α ∼ L0 behavior seen for both these cases. In
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FIG. 9. Disturbance metrics (22)–(26) for all j = 1, . . . ,N capsules for N = 30 applied to the most
amplifying transient disturbances visualized in Fig. 8: (a) φ = 0.2 and W = 10r0, (b) φ = 0.2 and W = 40r0,
(c) φ = 0.7 and W = 10r0, and (d) φ = 0.7 and W = 40r0. All metrics are plotted for all cases, normalized by
the largest value of any.

contrast, both narrow-channel configurations show a wavelike transverse displacement, also different
from the corresponding most-amplifying transient disturbances though still sinuous. These are My

dominant, as shown in Figs. 12(a) and 12(c).

C. Disturbance regime boundaries

The diverse transiently and asymptotically most amplifying disturbances shown in Figs. 8 and 11
suggest a more complete mapping of the configuration parameters to identify boundaries between
these regimes. These are illustrated in Fig. 13 for ranges of φ and W , where the nominal disturbance
character is based on the maximum values of the (22)–(26) metrics. Only the nonuniform tilt
in Fig. 13(b) was not directly observed in our four focus cases. It shows an obvious L-periodic
wavelike variation from the uniform tilt shown in Figs. 11(b) and 11(d).

101 102
10−2

10−1

100

∼ L1.96

∼ L0

∼ L0.76

∼ L0

L/r0

α
r 0

μ
/T

W = 10r0, φ = 0.2
W = 40r0, φ = 0.2
W = 10r0, φ = 0.7
W = 40r0, φ = 0.7

FIG. 10. Spectral abscissa α from (15) for different for cases of Fig. 3. The straight lines are power-law fits.
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(d)
A

FIG. 11. Most asymptotically (t → ∞) amplifying modal disturbances for the baseline case with N = 30
visualized in Fig. 3: baseline �x (dashed line) and perturbations visualized as �x + aε̂�sα (solid line) with aε̂ = 3.5:
(a) φ = 0.2 and W = 10r0, transverse translation; (b) φ = 0.2 and W = 40r0, uniform tilt; (c) φ = 0.7 and
W = 10r0, transverse translation; and (d) φ = 0.7 and W = 40r0, uniform tilt. The selected magnified capsules
are labeled accordingly.

D. An empirically stable, narrow-channel configuration

Figure 14 shows that in this case the capsules bend into a two-dimensional analog of the bulletlike
shapes seen in blood cells and empirical observations from long-time DNSs suggest indefinite
persistence of this single-file flow, even when perturbed. (In this case n = 35 was used to resolve the
more significant capsule deformations.) We analyze this case for comparison. Despite the empirical
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FIG. 12. Disturbance metrics (22)–(26) for all j = 1, . . . ,N capsules for N = 30 applied to the most
amplifying transient disturbances visualized in Fig. 11: (a) φ = 0.2 and W = 10r0, (b) φ = 0.2 and W = 40r0,
(c) φ = 0.7 and W = 10r0, and (d) φ = 0.7 and W = 40r0. All metrics are plotted for all cases, normalized by
the largest value of any.
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FIG. 13. Character of the most amplifying disturbances for a range of channel widths and packing fractions:
(a) transient �vη disturbances and (b) asymptotic �sα disturbances.

stability, linear analysis suggests both transient amplification (η = 0.28) and asymptotic instability
(α = 0.0018), though these are at least seven times smaller than those seen for the wider channels
(Figs. 7 and 10). Similar to wider channels, the corresponding �vη show asymmetric distortion reflected
by My [Figs. 14(b) and 14(d)], whereas the �sα shows a capsule-to-capsule varying mix of tilt and
asymmetric distortion, which is strongest for a particular capsule [j = 7 in Figs. 14(c) and 14(e)].

The amplifications of different disturbances are shown in Fig. 15. While DNSs initialized with
ε̂�vη and ε̂�sα do indeed initially reflect the predicted linear growth, as they must, it does not persist,
presumably due to nonlinear effects. The upper-bound ζ (t) growth is not realized and the �sα

disturbance likewise saturates also due to nonlinear effects associated with tight confinement. The
approximately constant ‖�ε‖ reached in this case at long times is consistent with a persistent tilt of

(a)

(b) (c)

2 4 6
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0.5
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j
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j

xc yc Mx My Mxy

(d) (e)

FIG. 14. (a) Baseline configuration for an empirically stable case with W = 4r0, φ = 0.5, and N = 7.
(b) The t → 0+ most amplified transient disturbances �x + 3.5�vη and (c) the asymptotically most amplified
disturbances �x + 3.5�sα . Also shown are the corresponding disturbance metrics (22)–(26) for (d) �vη and (e) �sα .
The exaggerated displacements cause these to look unphysical, as discussed in Sec. V A in regard to Fig. 8.
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)
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(A) 0.01r0vη exp ζ(t)t
(B) 0.01r0sα exp αt

(C) 0.01r0vη i.c., DNS
(D) 0.01r0sα i.c., DNS

FIG. 15. Disturbance amplification for the empirically stable narrow-channel case, visualized in Fig. 14(a).
The DNSs track (curves C and D) the corresponding linear amplifications (curves A and B) only for short times.

the membrane from its initial orientation, though the capsule returns to the same bent shape. Thus,
although this case is linearly unstable, significant linear amplification is not realized and might not be
expected given the obviously limited range of permissible motions for such tightly confined capsules.

VI. TRANSITION TO DISORDERED FLOW

An important potential consequence of the relatively fast predicted transient growth seen in
most cases is that it can significantly reduce time to the onset of significant nonlinear effects. A
specific example is shown in Fig. 16 for φ = 0.7 and W = 40r0. The DNS with initial perturbation
ε̂ = 0.001r0 (curve D in the figure) shows brief transient growth, but it does not lead directly to
obvious nonlinear behavior. Instead, the growth nearly ceases, because only a small portion of
�ε is associated with the disturbances that are amplified in this transient regime. It is only after
t � 1000r0μ/T that it again amplifies significantly, and then at a rate consistent with the t → ∞

10−2 10−1 100 101 102 103

10−3

10−2

10−1

100

Δt

A B C D

E F G

tT /r0μ

ε
(t

)
/r

0

(A) 0.001r0vη exp ηt

(B) 0.001r0vη exp ζ(t)t
(C) 0.001r0sα expαt

(D) 0.001r0vη i.c., DNS
(E) 0.01r0vη i.c., DNS
(F) 0.01r0sα i.c., DNS
(G) 0.01r0δyc i.c., DNS

FIG. 16. Disturbance amplitude evolution for the wide and dense configuration (W = 40r0 and φ = 0.7)
with ε̂ = 0.001r0 and 0.01r0 for initial conditions and predictions as labeled. The �t ≈ 103T /r0μ labels the
approximate difference in time for onset of nonlinear for transient versus eigenvalue estimates for ε̂ = 0.01r0

(see the text).
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ε̂vη ε̂sα ε̂δyc

t∗ = 0, exaggerated aε̂ t∗ = 0, exaggerated aε̂ t∗ = 0, exaggerated aε̂

t∗ = 0.050 t∗ = 85 t∗ = 7850

t∗ = 0.055 t∗ = 90 t∗ = 8225

t∗ = 0.060 t∗ = 98 t∗ = 8900

t∗ = 0.065 t∗ = 108 t∗ = 9400

t∗ = 0.400 t∗ = 170 t∗ = 10000

FIG. 17. Transition to disordered flow for the ε̂ = 10−2r0 cases of Fig. 16. The exaggeration factor is aε̂ =
3.5 for the initial configuration plot. The walls are not shown; they can be seen for the baseline configuration
in Fig. 3(d). The times shown t∗ = tT /r0μ were selected to illustrate the development qualitatively.

asymptotic α curve (C). Before this occurs, it remains bounded by the ζ (t) prediction (curve B).
In contrast, for a still small but larger ε̂ = 0.01r0, the initial condition ε̂�vη perturbation leads to
nonlinearity much earlier, about 103 times faster than would the t → ∞ mechanism for �sα , even
with the initial condition ε̂�sα . Both the ε̂�vη and ε̂�sα initial conditions show nonlinear saturation well
before a corresponding ad hoc perturbation constructed as random ε̂δyc displacements of the capsule
centroids. This ad hoc perturbation saturates 100 times more slowly still (curve G).

The subsequent DNS transition to an apparently chaotic flow for φ = 0.7 and W = 40r0 is
visualized for three different initial perturbations in Fig. 17. We see that the ε̂�vη initial condition has
a different development from the eigenvector ε̂�sα or ad hoc ε̂δyc disturbances. Its L-scale wavelike
structure persists and amplifies before it breaks down into an apparently chaotic flow. The other
initial perturbations lead to choppier variations in the capsule train, with shorter features in the
streamwise direction. In these cases, the capsule trains seem to first come apart at specific points,
before they develop an apparently chaotic behavior, much more slowly than the �vη case.

The relatively narrow W = 10r0 with φ = 0.2 [Fig. 3(a)] shows a qualitatively similar
amplification for the same three types of initial conditions (Fig. 18), though all of the growth
rates are substantially faster, as anticipated based on Figs. 7 and 10. In this case, nonlinear saturation
is accelerated only by a factor of 100 for the ε̂ = 0.01r0 initial disturbance ε̂�vη relative to ε̂�sα .
The weaker 0.001r0�vη perturbation also appears to reach an amplitude consistent with the onset
of nonlinear effects within the simulation time shown. The upper-bound exp ζ (t)t curve is again
consistent with this accelerated saturation.

Unlike the nonlinear breakdown for the densely packed wider channel of Fig. 17, Fig. 19 shows
that the three initial conditions in this narrower case have a progression qualitatively similar to a
relatively disorganized state. The capsules retain an approximately single-file structure but with the
capsules oriented at a range of angles with significant changes of streamwise spacing, as has been
observed in similar configurations in both two [80] and three [81] dimensions. Unlike the W = 40r0

and φ = 0.7 case, this configuration does not, at least for the times simulated, show significant
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FIG. 18. Disturbance amplitude evolution for the wide and dense configuration (W = 10r0 and φ = 0.2)
with ε̂ = 0.001r0 and 0.01r0 as labeled. The �t ≈ 102T /r0μ labels the approximate difference in time for the
onset of nonlinearity for transient versus eigenvalue estimates for ε̂ = 0.01 (see the text).

overturning or passing of the capsules, presumably because of some combination of the greater
confinement for W = 10r0 and less crowding for φ = 0.2.

VII. ELASTIC STIFFNESS

As discussed in Sec. IV A, the displacement-based measure used to quantify amplification does
not have a one-to-one correspondence with a mechanical energy, with the consequence that different
perturbations for the same ‖�ε‖ can have different strain energies. We consider this here, and more
generally the effect of capsule stiffness, by changing Ca. We consider capsules with up to Ca = 117,
starting from the Ca = 15.2 introduced as the basic case in Sec. II, which increases flexibility by
decreasing M by a factor of about 7.7. The tension modulus is adjusted correspondingly per (5).

The consequence of these changes on the initial transient and asymptotic amplification rates
is relatively small over this range, as shown in Fig. 20. The asymptotic growth rates are nearly

ε̂vη ε̂sα ε̂δyc

t∗ = 0, exaggerated aε̂ t∗ = 0, exaggerated aε̂ t∗ = 0, exaggerated aε̂

t∗ = 0.015 t∗ = 0.3 t∗ = 8.4

t∗ = 0.025 t∗ = 1.1 t∗ = 14.0

t∗ = 0.030 t∗ = 1.5 t∗ = 15.8

t∗ = 0.040 t∗ = 3.1 t∗ = 18.6

t∗ = 0.700 t∗ = 13.0 t∗ = 30.0

FIG. 19. Transition to disordered flow for the ε̂ = 0.01r0 cases of Fig. 18. The exaggeration factor is
aε̂ = 3.5 for the plot of the initial configuration. The walls are are not shown; they can be seen for the baseline
configuration in Fig. 3(a). The times shown t∗ = tT /r0μ were selected to demonstrate nonlinear disruption.
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FIG. 20. Effect of capsule stiffness on α and η.
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FIG. 21. The W = 40r0 and φ = 0.7 case: (a) Predicted disturbance amplitude for different membrane
stiffnesses based on η (dotted line), ζ (t) (solid line), and α (dashed line) and (b) relative strain energy of the
transiently most amplified mode �vζ (t) at time t (solid line). For reference, also shown in (b) are the energies
corresponding to �vη (dotted line) and �sα (dashed line). Note that neither plot displays the evolution of the
system in time. Rather, they show the maximum possible linear amplification amplitude and corresponding
strain energy for an ε̂ = 0.001r0 disturbance at that time. The strain energy can change abruptly as different
disturbances become the nominally most dangerous at specific times.

033201-18



CAPSULE-TRAIN STABILITY

unchanged; only the wide and dense (W = 40r0 and φ = 0.7) case shows a decrease at small M.
The transient amplification is more sensitive, as might be expected given that these disturbances
generally showed more distortion of the capsule shapes. Still, they only decrease by less than a factor
10, with similar effects on the eventual breakdown. Though we do not simulate smaller or larger Ca
because it is computationally more challenging and less relevant to the capsule regimes of interest, we
can anticipate that significantly stiffer or more flexible capsules will necessarily respond differently.

The ζ (t) amplification, shown for the wide and dense case (W = 40r0 and φ = 0.7) in Fig. 21, is
altered by the capsule stiffness, but not fundamentally changed. The delays observed for larger Ca
reflect changes in the strain energy of the corresponding disturbances. To quantify this, we define
strain energy

ψ = T
2

∫
all C

(
ds

ds0
− 1

)2

dl + M
2

∫
all C

κ2dl, (27)

and following (8) we define a perturbation value ψ ′(t) ≡ ψ(t) − ψb. Figure 21(b) shows that for
stiffer capsules (smaller Ca), the energy of the most transiently amplified initial disturbance for that
time, which we designate �vζ (t), is nearly constant. However, at a later time, it drops to a value
near that of �sα . For increasingly flexible capsules, this switch occurs increasingly close to the time
when asymptotic amplification is predicted to become significant. In all cases it is clear that the
transient disturbances carry significantly more strain energy than the asymptotic ones, indicating
that mechanical coupling within the capsules is a key factor only in transient amplification.

VIII. SUMMARY AND CONCLUSIONS

The primary conclusion is that both asymptotic and transient linear amplification of small
disturbances can upset single-file trains of flexible capsules when they are not tightly confined.
This was confirmed by direct comparison with corresponding nonlinear simulations. Analysis of
their growth rates anticipates that transiently amplifying finite, though still small (e.g., ε̂ = 0.01r0),
disturbances can significantly accelerate transition to an apparently chaotic flow. Both transiently
and asymptotically most-amplified disturbances reach this condition well before the ad hoc random
disturbances considered, which implies that some sort of stability analysis is necessary to predict
transition times in, say, a noisy environment. Interestingly, despite empirical observations of
apparently indefinite persistence, capsule trains in a highly confining very narrow channel were
also found to be linearly unstable. However, in this case nonlinear effects become active at relatively
small displacement amplitudes and preserve the regular train formation.

An implication for the design of devices that process flexible capsules is that channel geometry and
packing fraction both significantly affect the most-amplifying disturbances. Qualitatively different
most-amplifying disturbances were found to grow at very different rates in different cases. Since
the very narrowest channels provide the most obviously persistent capsule trains, it was particularly
unexpected that the relatively narrow W = 10r0 channel was significantly more amplifying than
the corresponding wider W = 40r0 channel. Yet despite this amplification, for small packing
fractions (φ = 0.2) nonlinear effects did not lead to a chaotic seeming flow in the times simulated.
Perturbations grew rapidly, but only developed into an irregular single-file arrangement, not the more
complicated overturning and passing seen for the more dense configurations.

There are three simplifications in the model configuration studied that warrant additional
discussion. The most obvious concerns how well these observations reflect three-dimensional
capsule flow. While the two-dimensional model reproduces the same basic phenomenology of
three-dimensional systems and has the advantage of requiring little computational effort to explore
large ranges of parameters, it is not expected to provide a quantitative model of real systems.
Numerical tools to do this are available [3], though subsequent analyses will likely be restricted
to a narrower range of parameters. The present study likewise neglects inertia. Though this is
undoubtedly a reasonable approximation for many phenomena at these conditions, the Reynolds
number might not always be so small as to preclude the accumulation of nonlinear effects at longer
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times. However, given the reliance of the present analysis on the boundary integral description of the
flow, including inertia in detail would necessitate a substantial redesign of the numerical approach.
The third simplification is the matching of the interior capsule viscosity to that of the suspending
fluid. It is understood that larger interior viscosities, such as in blood cells, can make them more
prone to tumbling, which becomes effectively solid-body motion in the infinite-interior-viscosity
limit. We have not investigated this for simplicity, though there is no expectation of any fundamental
changes for modest variations of interior viscosity.

Finally, it is unfortunate that the neglect of inertia (and kinetic energy), which makes flow in the
viscous limit relatively tractable analytically, precludes a convenient and unique mechanical energy
instability metric, such as that available for higher-Reynolds-number incompressible flows. As such,
some most-amplifying disturbances have seemingly negligible strain energy, whereas others have
significantly more. However, the basic behavior of the instabilities is insensitive to the stiffness
of the capsules, so the qualitative response is unchanged by the initial strain energy. The transient
amplification is increased for stiffer capsules, as expected, and the switchover to the long-time
asymptotic behavior is likewise accelerated, but qualitatively unchanged. The long-time asymptotic
stability is relatively insensitive to capsule stiffness for the range considered, presumably because it
hinges mostly on the linear flow and the capsule-capsule interaction mechanics it mediates. There is
an abrupt switch between the short-time behavior, for which the most-dangerous perturbations carry
relatively large strain energy, and the asymptotically most unstable modes, which do not.
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