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ABSTRACT

The dynamics of cavitation bubbles are important in
many applications, but the wide range of spatio-temporal
scales and a large number of bubbles often preclude di-
rect simulations. We develop a statistical Euler–Euler
description of sub-grid bubbles that includes, for the
first time, the independent variables of the oscillatory
cavitation dynamics. The approach stitches together sev-
eral state-of-the-art computational tools: a generalized
population balance representing the statics of the cavi-
tating bubbles, conditional quadrature moment methods
(QBMMs) computes them, ensemble phase-averaging
couples them to the fluid flow, and high-order-accurate
interface capturing stably evolves the flow in time. The
one-way-coupled evolution of the forced bubbles is used
to evaluate the accuracy of the QBMM statistics against
truth data generated through a Monte Carlo approach.
CHyQMOM provides the most computationally efficient
closure for this purpose, and we implement it in the
open-source MFC multiphase flow solver.

An acoustically excited bubble screen problem is used to
determine the importance and relevance of representing
the bubble statistics in this way. Broadening the distri-
bution of bubble radii and radial velocities significantly
impacts the dynamics. Broader distributions in radii in-
crease pressure fluctuations, as the averaged bubble oscil-
lations occur at a shorter time scale than the transmitted
pressure wave. Broadening the bubble radial velocity
distribution results in the opposite effect, smoothing the
pressure oscillations observed in the screen region.

Our results also show that significant model-form errors
can accumulate under strong and long-time pressure forc-
ings. To address this issue, we present a long short-term
memory recurrent neural network (LSTM RNN) model
that adjusts the quadrature rule to improve its accuracy.
The method is tested on a simple one-way-coupled test

case and shown to decrease these errors by a factor of
about ten. The neural network avoids introducing numer-
ical instabilities by incorporating the moment transport
equations and the moment realizability into the loss func-
tion.

INTRODUCTION

Flowing dispersions of oscillating bubbles display dy-
namics at a broad range of spatio-temporal scales. Com-
putational models can alleviate simulation costs by rep-
resenting the dynamics of the dispersed phase at the
sub-grid level instead of resolving them directly. Pop-
ulation balance models are a statistical framework for
this (Vanni, 2000). They solve a population balance
equation (PBE) by, e.g., the method of moments, which
approximates the evolving PBE quantities using a set
of statistical moments (McGraw, 1997). This approach
has successfully modeled the coalescence, breakup, and
motion of the dispersed phase (Fox, 2008). This is useful
for simulating the soot that forms from combustion pro-
cesses (Mueller et al., 2009), aerosol sprays (Sibra et al.,
2017), and more.

We implement a conditional moment method called
CHyQMOM into a high-order-accurate multiphase flow
solver called MFC. The method can interrogate two-way-
coupled fluid–bubble interactions. We assess this via an
acoustically excited bubble screen problem. At the same
time, model-form errors can be meaningfully large for
strong pressure forcings (Bryngelson et al., 2020). Some
moment methods can accommodate arbitrarily large mo-
ment sets to better approximate high-order statistics of
the dynamics (McGraw, 1997; Yuan and Fox, 2011).
However, these methods can become numerically stiff
or unstable. For quadrature-based moment methods, this
happens when the quadrature nodes become arbitrarily



close to each other and the moment set becomes un-
realizable (Vikas et al., 2011). We explore long short-
term memory (LSTM) recurrent neural networks (RNNs)
as an approach to overcome this limitation. Cavitat-
ing bubble dispersions are used as a case study since
non-Gaussian features are essential for strong driving
pressures (Bryngelson et al., 2020).

A previous study used an LSTM RNN to extrapolate
high-order moments from Gaussian ones for this prob-
lem (Bryngelson et al., 2020). We expand on this study
by considering quadrature moment methods instead of
strictly Gaussian ones. Besides increased accuracy for
the same computational cost, this change allows for data-
driven corrections to the quadrature rule directly and
incorporates the high-order moments into the neural net-
work loss function.

MODEL FORMULATION

Compressible flow equations

A dilute suspension of dynamically evolving bubbles
flow in a compressible liquid is considered. For simplic-
ity, we assume no slip between the bubbles and the sur-
rounding liquid and that the gas density is much smaller
than the liquid density. Under these assumptions, the
mixture-averaged form of the compressible flow equa-
tions are

∂ρ

∂t
+∇ · (ρu) = 0,

∂ρu

∂t
+∇ · (ρuu+ pI) = 0, (1)

∂E

∂t
+∇ · (E + p)u =0,

where ρ, u, p, and E are the density, velocity vector,
pressure, and total energy. Terms associated with the
bubbles modify these quantities and transport them in
space according to ensemble phase-averaging, discussed
next.

Ensemble phase-averaging

The ensemble-averaged equations follow from a stan-
dard analysis (Zhang and Prosperetti, 1994; Ando et al.,
2011; Bryngelson et al., 2019). The disperse phase has
a void fraction α and is assumed to be a dilute (α ≪ 1)
population of spherical bubbles. The bubbles are repre-
sented statistically via random variables R, Ṙ, and Ro

corresponding to the instantaneous bubble radius, time

derivative, and equilibrium bubble radius, presented in
the next section. The mixture-averaged pressure field is
computed as

p(x, t) = (1− α)pℓ + α

(
R3pbw

R3
− ρ

R3Ṙ2

R3

)
, (2)

where pbw are the associated bubble wall pressure and
pℓ(x, t) is the liquid pressure according to the stiffened-
gas equation of state (Menikoff and Plohr, 1989):

Γℓpℓ +Π∞,ℓ =
1

1− α

(
E − 1

2
ρu2

)
. (3)

The coefficients of (3) represent water, with specific heat
ratio γℓ = 1 + 1/Γℓ = 7.15 and stiffness Π∞,ℓ =
356MPa (Maeda and Colonius, 2018).

The bubble number density per unit volume n(x, t) is
conserved in the absence of coalescence or breakup:

∂n

∂t
+∇ · (nu) = 0. (4)

For the spherical bubbles considered here, n is related to
the void fraction α via

α(x, t) =
4

3
πR3n(x, t), (5)

and thus the void fraction α(x, t) transports as

∂α

∂t
+ u · ∇α = 3α

R2Ṙ

R3
, (6)

where the right-hand-side represents the change in void
fraction due to bubble growth and collapse.

The over-barred terms appearing in (2), (5), and (6),

R3Ṙ2, R3, R2Ṙ, and R3pbw. (7)

denote average quantities of the bubble dispersion. In
particular, they are raw moments µlmn with respect to a
bubble number density function f(R, Ṙ,Ro),

µlmn = RlṘmRn
o =∫

Ω

RlṘmRn
o f(R, Ṙ,Ro) dRdṘdRo, (8)

which are computed via the quadrature moment methods
of the previous section.

Bubble dynamics model

We use a simple Rayleigh–Plesset-like bubble dynamics
model. Cognizant that many more complex and compre-
hensive models exist, the RPE model is sufficient to inter-
rogate our method while maintaining sufficient generality



in the implementation. This model assumes spherical
bubbles filled with noncondensible gas and incompress-
ible surrounding liquid. Under these assumptions, the
bubble radius is governed by a Rayleigh–Plesslet-like
equation

RR̈+
3

2
Ṙ2 +

4

Re
Ṙ

R
=(

Ro

R

)3γ

− 1

Cp
− 2

WeRo

[
Ro

R
−
(
Ro

R

)3γ
]
,

(9)

which is dimensionless via the reference bubble size R∗
o,

liquid pressure p0, and density ρ0. The polytropic index
is γ = 1.4 and Cp ≡ p0/pℓ is the forcing pressure ra-
tio. The Reynolds and Weber numbers are introduced to
quantify to viscous and surface tension effects as

Re ≡
√

p0
ρ0

R∗
o

ν0
and We ≡ p0R

∗
o

S
, (10)

ν0 is the kinematic viscosity and S is the surface tension
coefficient. Thus, pbw = (Ro/R)

3γ and the last moment
of (7) is R3(Ro/R)3γ .

POPULATION BALANCE FORMULATION AND
INVERSION

The population balance equation (PBE)

∂f

∂t
+

∂

∂R
(fṘ) +

∂

∂Ṙ
(fR̈) = 0 (11)

governs the PDF f(R, Ṙ|Ro). One can add coalescence
and breakup terms on the right-hand side if needed. Fig-
ure 1 summarizes the PBE-based approach.

A set of raw moments µ⃗ represents the number density
function f (Fox, 2003). These moments µ⃗ transport on
the grid and evolve according to

∂nµ⃗

∂t
+∇ · (nµ⃗u) = n ˙⃗µ = ng⃗ (12)

where

glmn = lµl−1,m+1,n+

m

∫∫∫
Ω

R̈RlṘm−1Rn
o f(µ⃗) dRdṘdRo

(13)

and Ω = ΩR × ΩṘ × ΩRo
= (0,∞) × (−∞,∞) ×

(0,∞) (Bryngelson et al., 2020). The integrand of (13)
is closed via (9), and the integral is computed via quadra-
ture, as discussed next.

The number density function is split as

f(R, Ṙ,Ro) = f(R, Ṙ|Ro)f(Ro), (14)

and the raw moments are

µlmn ≡
∫
ΩRo

f(Ro)R
m
o µlm(Ro) dRo (15)

≈
NRo∑
i=1

wiR̂
n
o,i µlm(R̂o,i), (16)

where NRo is the number of Ro-direction weights wi

and abscissas R̂o,i, which are computed via Simpson’s
rule for the results here. The Ro-conditioned moments
are

µlm(R̂o,i) ≡
∫∫

ΩR,Ṙ

f(R, Ṙ|R̂o,i)R
lṘm dRdṘ

≈
NR∑
j=1

NṘ∑
k=1

[
ŵj,kR̂

l
j
̂̇Rm

k

]
R̂o,i

. (17)

The moment indices comprising the moment set of (17)
are associated with the conditional quadrature moment
method used to invert those moments (Yuan and Fox,
2011; Patel et al., 2019). In particular, µlm(R̂o,i)

is inverted for quadrature points {R̂j ,
̂̇Rk}(R̂o,i) and

weights ŵj,k(R̂o,i) for each i = 1, . . . , NRo
(with j =

1, . . . , NR; k = 1, . . . , NṘ). The total moments (16) are
approximated by substituting (17) into (16):

µlmn =

NRo∑
i=1

wiR̂
n
o,i

NR∑
j=1

NṘ∑
k=1

[
ŵj,kR̂

l
j
̂̇Rm

k

]
R̂o,i

. (18)

The CHyQMOM algorithm is described in Fox et al.
(2018).

INTERFACE-CAPTURING NUMERICAL
METHOD

Interface-capturing numerics are used to solve for the
flow of a polydisperse bubble cloud. The method of the
previous section is implemented in MFC, an open-source
flow solver (Bryngelson et al., 2021). The governing
equations combine as

∂q⃗c
∂t

+∇ · F⃗ = r⃗ (19)

where q⃗c are the conservative variables, F⃗ are the advec-
tive fluxes, and r⃗ are diffusive source terms. The flow is
initialized via an independently distributed f(R, Ṙ,Ro)
with log-normal, normal, and log-normal shapes in the
R, Ṙ, and Ro directions with expected values E[R] =
E[Ro] = 1 and E[Ṙ] = 0 and shape parameters σ·.
The moment set µ⃗ is then computed via integration
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Figure 1: Schematic illustration of a quadrature moment method. Adapted from our previous work (Bryngelson
et al., 2020).

of the NDF. A fifth-order-accurate WENO (Jiang and
Shu, 1996) scheme reconstructs the primitive variables
q⃗p and the HLLC approximate Riemann solver (Toro
et al., 1994) computes the fluxes. High-order WENO re-
constructions do not guarantee that the reconstructed
moments are realizable, though the moment sets re-
mained invertible in the subsequent simulations. The
conservative variables are integrated in time using third-
order-accurate SSP–RK3 time integration (Gottlieb et al.,
2001).

APPLICATION TO POLYDISPERSE BUBBLE
SCREENS

Problem setup

We assess our approach by considering statistics of bub-
ble dynamics in an acoustically excited dilute bubble
screen. The bubble screen parameterization matches that
of Bryngelson et al. (2019) and Bryngelson et al. (2021),
with initial initial void fraction αo = 10−4, median bub-
ble equilibrium size R∗

o = 10 µm and log-normal vari-
ance σRo

. A one-way sound wave with pressure p∞(t)
is generated via source terms in the governing equations

according to to Bryngelson et al. (2019). Its form is a
single period of a sinusoid with peak amplitude 0.3p0
and frequency 300 kHz.

Bubble screen behavior
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Figure 2: Bubble-screen-centered pressure for varying
Ro log-normal distributions with shape parameter σRo

and fixed σR = σṘ = 0.2.

We start by considering a screen with fixed dynamic coor-
dinate distributions σR = σṘ, but varying distributions
of equilibrium sizes σRo . Polydispersity in Ro is inte-
grated via Simpson’s rule 61 quadrature points for all



cases. Figure 2 shows the bubble screen pressure for
these cases as they evolve in time. For larger σRo (or
broader distributions or bubble equilibrium sizes), the
pressure is less oscillatory in time. A similar observation
was made by Bryngelson et al. (2019) for cases with no
R or Ṙ distributions. In the case of figure 2, we instead
observe high-frequency oscillations in addition to the
long-wavelength behaviors associated with the imping-
ing pressure wave p∞. The origin of these oscillations is
discussed next.
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Figure 3: Bubble-screen-centered pressure before, dur-
ing, and after excitement due to an acoustic wave. The
bubbles are polydisperse with log-normal Ro distribution
(σRo

= 0.2) and Re = 103. Variations in (a) σR and
(b) σṘ are shown about a σR = σṘ = 0.2 representative
state.

Figure 3 shows the dynamics associated with a bubble
screen in varying degrees of statistical disequilibrium,
represented via different σR and σṘ. Figure 3 (a) fixes
σṘ and varies σR. We observe the shorter-wavelength
oscillatory behavior, observed in figure 2, becoming
more prominent for larger σR. These wavelengths are
commensurate with the mean bubble natural frequen-
cies, which superimpose the longer wavelength acoustics
associated with the impinging p∞ wave. Figure 3 (b)
shows a smoother pressure profile for larger σṘ. Phase-
cancellation between the larger waves associated with
broader σṘ distributions and those of the σR distributions
may account for this behavior. Notably, these behaviors
are qualitatively similar to those associated with varying
Ro distribution widths. Thus, parameterizing an Ro dis-
tribution based on single-probe pressure measurements
is insufficient.

Closure errors

We quantify the moment closure error, εc, via the relative
mismatch in bubble screen pressure p(t, x = 0) due to
truncated Ro integration as

εc ≡
1

Nt

√√√√ Nt∑
i=1

[
pQBMM(ti, 0)− pEx.(ti, 0)

pEx.(ti, 0)

]2
. (20)
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Figure 4: Relative closure error εc (defined in (20))
for increasing number of Ro-direction quadrature points
NRo . Variations in (a) σR, (b) σṘ, and (c) σRo are
shown. Unless labeled otherwise, cases have the baseline
σR = σṘ = σRo

= 0.2.

Figure 4 shows the NRo
closure errors associated with

variations in all three PDF directions (panels a–c). For
varying σR (a) and σRo (c) we see that increasing vari-
ance σ· results in larger closure errors, seemingly associ-
ated with the larger pressure oscillations. For figure 4 (b),
the reverse trend is observed, and larger σṘ corresponds



to smaller closure errors. This effect matches that of the
R- and Ro-direction effects, where larger σṘ results in
smoother pressure histories.

HYBRID QUADRATURE MOMENT METHOD
FORMULATION

One cannot reduce the closure errors of figure 4 by
adding additional quadrature points, as this makes the
simulations either stiff or unstable. Instead, we imple-
ment a machine-learning-based hybrid approach follow-
ing (Charalampopoulos et al., 2021). We improve the
CHyQMOM moment inversion by adjusting the loca-
tion and weights of the quadrature rule. The unaug-
mented CHyQMOM quadrature rule is denoted via
{w(QBMM), ξ(QBMM)}. For these corrections, an LSTM
RNN is employed. The LSTM is used to incorporate
memory effects into the reduced-order model.

The corrections {w′, ξ′} serve as input predictions for
the first- and second-order moments as well as the pres-
sure {µ1,0, µ0,1, µ2,0, µ1,1, µ0,2, Cp}. They are modeled
as

{w′(t), ξ′(t)} = G[Θ;µ(χ(t)), Cp(χ(t)),Re], (21)

where the vector Θ denotes hyperparameters and op-
timized parameters of the neural network as obtained
during training. The chosen hyperparameters are in ta-
ble 1.

Hyperparameter Value
Epochs 500

Learning rate 10−5

Batch size 32
Activation function tanh

Recurrent activation function hard sigmoid
Dropout coefficient 0.10

Recurrent dropout coeffificent 0.10
LSTM is stateful True
Kernel initializer Zeros

Recurrent initializer Zeros
Bias initializer Zeros

Hidden units 28

Table 1: Hyperparameters used to train the neural net-
works.

The history of the reduced-order model states is then

χ(t) = {t, t− τ1, ..., t− τN}. (22)

and hybrid quadrature rule follows as

w = w(QBMM) +w′ (23)
and (24)

ξ = ξ(QBMM) + ξ′. (25)

The neural network loss function incorporates the high-
order moments associated with the ensemble-averaged
closure model, the low-order moments µ, and the right-
hand-side of (13) as

L =
∑

0≤i,j≤2

αi,j

(
∂µ

(ML)
i,j

∂t
−

∂µ
(MC)
i,j

∂t

)2

+

∑
(i,j)∈I

βi,j

(∑
k

wkξ
i
1,kξ

j
2,k − µ

(MC)
i,j

)2

+λ
∑
k

Relu(−wk),

(26)

where,

I = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1),
(0, 2), (3, 0), (2, 1), (3, 2), (3− 3γ, 0)},

(27)

and

αi,j =

∥∥∥∥∥∂µ
(MC)
i,j

∂t

∥∥∥∥∥
−1

∞

, βi,j =
∥∥∥µ(MC)

i,j

∥∥∥−1

∞
. (28)

The first term in (26) L2 minimizes the right-hand-sides
of the transport equations. The second term in (26) mini-
mizes prediction error for the moments and penalizes the
network when the weights do not sum to unity. The last
term in (26) penalizes negative weights. Once trained,

µ
(ML)−−−→ {w, ξ}

is a new quadrature rule that evaluates the right-hand side
of the moment transport equations.

HYBRID CHYQMOM TRAINING

Pressure signals

The neural network is trained on a broad range of physi-
cally viable pressure profiles Cp(t) as

Cp(t) = 1 +

N∑
i=1

αi sin [2πfit+ ϕi] , (29)

where t corresponds to nondimensional time, fi are the
dimensionless frequencies, and αi and ϕi are the cor-
responding amplitude and phase. Cp = 1 is the equi-
librium pressure of the bubbles (for which R = 1 and



Ṙ = 0). Most flows do not contain pressure frequencies
higher than the natural oscillation frequency of the bub-
bles (Brennen, 2014). We operate under this constraint,
though higher frequencies could be included if desired.
On the other hand, very low frequencies are uninteresting
because they cause the bubbles to evolve quasi-statically.
Hence, without loss of generality, the dimensionless fre-
quencies of Cp are in the interval fi ∈ [1/10, 1/5]. The
phases of the waveforms are independently sampled from
a uniform distribution.

LSTM RNN training procedure

We simulate 1000 samples of individual bubbles for each
realization of Cp. Each case is evolved until t = 50 natu-
ral periods of bubble oscillations. The individual bubble
dynamics are then averaged to obtain the Monte Carlo
reference statistics for each realization. 200 samples of
Cp from (29) are used. From these, 50 are randomly
selected for training, with the remaining 150 cases used
during testing. The Adam method (Kingma and Ba,
2014) trained each neural network for 500 epochs, mini-
mizing the loss function (26).

Figure 5 shows f and the quadrature points for one pres-
sure profile at different time instances. The same figure
displays the CHyQMOM nodes as estimated by the stan-
dard 4-node CHyQMOM scheme and the 4-node hybrid
scheme.
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Figure 5: Temporal snapshots of f computed via Monte
Carlo and the positions of the quadrature nodes for
4-node CHyQMOM scheme (QBMM) and the hybrid
CHyQMOM scheme (Hybrid). The labels (i)–(v) corre-
spond to different times t.

HYBRID CHYQMOM RESULTS

Low-order moment evolution and error quantifica-
tion

The model-form relative error ε is computed via a dis-
crete L2 error, for which Monte Carlo data serves as the
surrogate truth. The ti are Nt = 5000 uniformly spaced
times in the interval t ∈ [0, 50]. Results regarding the
low-order moments are presented in figure 6.

Figure 6 shows εl,m for the first- and second-order mo-
ments µ for the 4-node schemes. All results correspond
to 4 randomly selected testing samples (a)–(d) as la-
beled. We observe a smaller ϵ for the hybrid scheme
than standard CHyQMOM for all 4 cases considered.
The largest errors for both approaches appear for mo-
ment µ0,2, which exhibits large and intermittent fluctua-
tions when the bubbles collapse. The observed increase
in accuracy varies significantly from case-to-case and
moment-to-moment, from 10 times smaller errors to only
20% improvements.

High-order moment extrapolation

The following quantity of interest is the L2-error in pre-
dicting the ensemble-averaging-required higher-order
moments. Figure 7 presents these results for the same
four pressure samples of figure 6. For all moments, the
hybrid CHyQMOM significantly improves the predic-
tions of the moments. This improvement is associated
with the more accurate evolution of the low-order mo-
ments µ and these targeted moments in the neural net-
work training procedure.

DISCUSSION AND CONCLUSIONS

We presented an Euler–Euler simulation algorithm for
the statistics of phase-averaged bubbly flows. We showed
a conditional quadrature moment method to be efficient
for this task, compared to other techniques and other
methodologies. The method was integrated into MFC
and displayed rich dynamics that are otherwise unrep-
resented by other simulations of bubbly flows. Even
lacking experimental validation, a future aim, this obser-
vation is sufficient to warrant further interrogation of the
practical, realized statistics of bubbly cavitating flows.

Though our simulations were crafted such that model-
form errors were small, larger pressure waves or different
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Figure 6: Low-order moment errors for different randomly selected test cases (a–d) and the hybrid and standard
CHyQMOM as labeled.
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Figure 7: High-order moment errors for different randomly selected test cases (a–d) and the hybrid and standard
CHyQMOM as labeled.

initial bubble cloud statistics introduce more significant
errors. These errors cannot be addressed in the usual way,
adding more quadrature points, as we observed numerical
instability when attempting to do so. This resulted from
quadrature points becoming arbitrarily close together or
far apart. Instead, we trained an LSTM RNN with a loss
function crafted to adjust the quadrature for more stable,
realizable results. This resulted in a significant reduction
in model form errors, particularly for the higher-order
moments associated with the phase averaging.
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quadrature method of moments for kinetic equations,
J. Comp. Phys. 365 (2018) 269–293.

S. H. Bryngelson, K. Schmidmayer, V. Coralic, J. C.
Meng, K. Maeda, T. Colonius, MFC: An open-source
high-order multi-component, multi-phase, and multi-
scale compressible flow solver, Comp. Phys. Comm.
(2021) 107396.

G.-S. Jiang, C.-W. Shu, Efficient implementation of
weighted eno schemes, J. Comp. Phys. 126 (1996)
202–228.

E. Toro, M. Spruce, W. Speares, Restoration of the con-
tact surface in the HLL-Riemann solver, Shock waves
4 (1994) 25–34.

S. Gottlieb, C. W. Shu, E. Tadmor, Strong stability-
preserving high-order time discretization methods,
SIAM Rev. (2001).

S. H. Bryngelson, R. O. Fox, T. Colonius, Conditional
moment methods for polydisperse cavitating flows,
arXiv:2112.14172 (2021).

A.-T. Charalampopoulos, S. H. Bryngelson, T. Colonius,
T. P. Sapsis, Hybrid quadrature moment method for ac-
curate and stable representation of non-Gaussian pro-
cesses and their dynamics, arXiv:2110.01374 (2021).

C. E. Brennen, Cavitation and bubble dynamics, Cam-
bridge University Press, 2014.

D. P. Kingma, J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980 (2014).



DISCUSSION #1

Harish Ganesh, Assistant Research Scientist, Depart-
ment of Naval Architecture and Marine Engineering,
University of Michigan, Ann Arbor

I would like to thank the authors for recommending me
as one of the discussers. This is a very good paper and
the numerical approach is interesting. I am looking for-
ward to the final implementation of the method to study
cavitating flows of naval interest.

My questions are:

1. The authors mention that they plan on applying
this methodology to study cavitation inception
problems. Background nuclei distribution plays an
important role in cavitation inception. How will
free-stream nucleation be taken care of?

2. How do they plan on distinguishing sub-grid scale
inception and inception that span several cells?

3. Can the authors also comment on the importance
(or in case of RANS) of sub-grid scale turbulence
models in predicting inception with this methodol-
ogy?

AUTHORS’ REPLY

We thank Dr. Ganesh for his kind comments on our paper.

1. The background nuclei distribution will be repre-
sented using the moment representation introduced
in, for example, (12). This is challenging, as both
the nuclei content in experiments and the resulting
cavitation events are susceptible to outsized uncer-
tainties. However, improvements in experimental
nuclei control and the relatively cheap computa-
tional burden of our simulations will be leveraged
in an attempt to match such conditions.

2. Inception at sub-grid scales will be modeled via
the strategy of item 1. Larger inception events
that require multiple grid cells will be represented
via resolved phase-change models, like those de-
scribed in Rodriguez, Bryngelson, & Colonius,
2022 SNH34 and CAV and Pelanti & Shyue, IJMF
2019.

3. We will start by resolving the relevant turbulence
scales via DNS, which occur at larger scales, and

modeling the comparatively small bubbles. Expe-
diting simulations when LES or RANS is appro-
priate also appears possible. For example, models
including both turbulence and particle dispersions
exist (see the work of J. Capecelatro and others),
though we yet to investigate the coupled cavitating-
bubble–turbulence-model case.

DISCUSSION #2

Keita Ando, Associate Professor, Department of Mechan-
ical Engineering, Keio University

1. To closed mixture-averaged homogeneous flow
equations (under two-way coupling assumption),
the authors use the Rayleigh–Plesset (RP) equa-
tion for bubbles in “incompressible” liquids. Does
it mean that your simulation target does not in-
clude violent bubble collapse? This indication will
be consistent with the assumption that the bubble
number density is conserved with no bubble fis-
sion. It is also instructive to more clearly the prob-
lem setup. I believe that the simulation time scale
is relatively short and complex phenomena such
as rectified mass diffusion and bubble coalescence
by the secondary Bjerknes force are neglected for
simplicity.

2. Is the void fraction set simply set at 0 or very small
values (say, 10−12) outside the bubble screen? Can
the void fraction discontinuity at the bubble screen
edges trigger numerical instability?

3. In the present simulation setup, you consider non-
linear acoustic wave propagation and interaction
with a bubble screen. Have you ever considered
linear cases with very small-amplitude waves? In
this case, you can compare simulation results with
analytical solution (see Commander & Prosperetti,
JASA 1989).

4. Mathematically speaking, you consider a forced
oscillation of bubbles with incoming wave of a
simple sinusoid at 300 kHz. In addition to forced
frequency 300 kHz, we also have an important tem-
poral scale, i.e., free oscillation of individual bub-
bles. The extent of phase cancellation effects re-
sulting from collective oscillations of bubbles with
different R0 will be determined according to the
relation between the forced frequency and bubbles’
natural frequency as an initial value problem for
unsteady wave propagation. For example, when
using different forced frequency, the results will



be changed significantly; in this sense, you had
better explain why you chose the forced frequency
at 300 kHz in comparison to bubbles’ natural fre-
quency. When it comes to examining unsteady
pressure wave evolution (short and long waves), it
is important to carefully look at the RP equation.
The linear acoustic relations (Commander & Pros-
peretti, 1989) may also help you understand what
happened in the simulation.

AUTHORS’ REPLY

We thank Professor Ando for his thoughtful review of
our submission.

1. We use Rayleigh–Plesset bubbles as a proof-of-
concept for our methodology. In practice, we have
found that simulating Keller–Miksis bubbles is no
more challenging, as it does not introduce addi-
tional independent variables (or internal coordi-
nates, per the language used in the paper). From
the QBMM’s perspective, bubbles including such
compressibility should only lead to less stiff mo-
ment dynamics. Prof. Ando is correct, we do
not include some physical effects, including recti-
fied mass diffusion, coalescence, or the secondary
Bjerknes force. In principle, some of these ef-
fects can be added to our computational model:
rectified diffusion can be added to the bubble dy-
namics equation by introducing additional internal
variables following the work of Preston and Colo-
nius, coalescence can be incorporated into the PBE
following the strategy of Marchisio & Fox, 2013.
Buttressing the model with the secondary Bjerknes
force would require a more thorough treatment of
bubble–bubble dynamics effects than we consider
here, though this is a topic we are considering for
future work.

2. The void fraction is indeed set to a small number,
10−11, to avoid division by zero errors. This has
not lead to instabilities in the numerical method,
which was constructed to represent such sharp fea-
tures via interface capturing.

3. We have not compared the results of the disequilib-
rium case (σR, σṘ > 0) to theory. These earlier
theoretic results do not account for these effects,
so it is challenging to make a direct comparison.
In the appropriate limit, σ∗ → 0, our results agree
with those of Commander & Prosperetti as ex-
pected.

4. We thank Professor Ando for the recommendation

and will use this strategy to scrutinize the observed
bubble behavior in future work.
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