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Solving the population balance equation (PBE) for
the dynamics of a dispersed phase coupled to a
continuous fluid is expensive. Still, one can reduce
the cost by representing the evolving particle density
function in terms of its moments. In particular,
quadrature-based moment methods (QBMMs) invert
these moments with a quadrature rule, approximating
the required statistics. QBMMs have been shown to
accurately model sprays and soot with a relatively
compact set of moments. However, significantly
non-Gaussian processes such as bubble dynamics
lead to numerical instabilities when extending their
moment sets accordingly. We solve this problem
by training a recurrent neural network (RNN) that
adjusts the QBMM quadrature to evaluate unclosed
moments with higher accuracy. The proposed method
is tested on a simple model of bubbles oscillating
in response to a temporally fluctuating pressure
field. The approach decreases model-form error by a
factor of 10 when compared with traditional QBMMs.
It is both numerically stable and computationally
efficient since it does not expand the baseline moment
set. Additional quadrature points are also assessed,
optimally placed and weighted according to an

© 2022 The Author(s) Published by the Royal Society. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2021.0209&domain=pdf&date_stamp=2022-06-20
https://doi.org/10.1098/rsta/380/2229
mailto:alexchar@mit.edu
https://doi.org/10.6084/m9.figshare.c.6032997
https://doi.org/10.6084/m9.figshare.c.6032997
http://orcid.org/0000-0003-4136-0363
http://orcid.org/0000-0003-0302-0691

Downloaded from https://royal societypublishing.org/ on 22 June 2022

additional RNN. These points further decrease the error at low cost since the moment set is
again unchanged.
This article is part of the theme issue ‘Data-driven prediction in dynamical systems’.

1. Introduction

The dynamics of dispersions of small particles or bubbles in a fluid are important to many
engineering and medical applications. In medicine, ultrasounds, generated via small cavitating
bubbles, are employed during cataract removal [1], to stop internal bleeding [2,3], and in other
procedures like tumour necrosis [4]. Focused shockwaves can cavitate bubbles that ablate kidney
stones during lithotripsy treatment [5,6]. Their interaction with biological tissue or manufactured
soft materials also attracts the medical [7-11] and material science communities [12-14]. Bubble
cavitation is also responsible for damage and noise in hydraulic pipe systems [15,16], hydro
turbines [17-19] and propellers [20,21]. At the same time, soots are critical to combustion [22-25]
and aerosols are used in many industrial processes [26-28]. In nature, cavitation is used as part
of the hunting strategies of some marine animals, including humpback whales [29-31], mantis
shrimps [32] and snapping shrimps [33,34].

While the dynamics of these particles can be simulated directly for a specific (sampled)
dispersion by tracking each particle, distribution statistics are typically sought in applications.
In flows with large spatial gradients, a large ensemble of such simulations (Monte Carlo, MC)
is required to gather these statistics [35,36]. The poor scaling of MC makes such simulations
expensive, and particle tracking also interferes with efficient parallelization. By instead phase-
averaging the equations of motion [37], a two-way coupled set of Eulerian equations that are more
suitable to parallelization and GPU processing is obtained. However, the averaged equations
involve solving the generalized population balance equation (PBE) [38]. The PBE evolves the
dispersed phase number density function (NDF) as a function of its dynamic variables [39].
For example, the relevant variables for bubbles dynamics are the bubble radii and their radial
velocities. However, further treatment is still required. The PBE is a partial differential equation
in the dynamic variables, separate from the spatial and temporal variables of the flow equations,
making this approach intractable for large simulations.

Quadrature-based moment methods (QBMMs) are a low-cost approach to approximately
solving a PBE. Introduced in [40], OBMMs have seen rapid improvement [41]. In brief, they
prescribe a finite moment set and invert it to an optimal set of quadrature nodes and weights
in the dynamic system phase space. The success of QBMMs has led to the creation of open-
source libraries for them [39,42]. In the case of multiple dynamic variables, conditional QBMMs
like conditional quadrature method of moments (CQMOM) [43] and conditional hyperbolic-
MOM (CHyQMOM) [44,45] are preferred. These methods can efficiently solve many problems
but suffer from a combinatorial explosion of their computational cost when higher accuracy
is needed. This problem stems from the need to evolve all moments up to a higher order to
increase accuracy. Worse still, these methods can exhibit numerical instabilities when third- or
higher-order moments are evolved [41].

To circumvent these stability issues, this work employs neural networks to enhance the
predictive abilities of standard 2-by-2-node (4-node) CHyQMOM, which only requires access
to first- and second-order moments. This approach avoids both the numerical instabilities and
high computational costs of evolving higher-order moments. The method follows the recent
success of deep neural networks for improving multiphase flow models [46-49]. We expand on
a previous such effort that used neural networks to close strictly Gaussian moment transport
equations [46]. Here, we instead seek data-informed corrections to a CHyQMOM method [44,45].
By doing this, one has control over the resulting quadrature nodes and weights. This makes
correcting moment approximations straightforward and consolidates the two neural networks
of [46] to one. This allows for computation of even out-of-training-set moments, in contrast to
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data-informed moment methods that use low-order moments to learn specific high-order ones
[50-52]. Extension from [46] includes non-uniform and long-time pressure forcings, making the
trained model appropriate for computational fluid dynamics (CFD) solvers.

We emphasize that incorporating a trained neural network into a numerical method comes
with its constraints. The neural networks train on a finite set of pressure profiles thought
appropriate for a class of physical problems. However, one cannot ensure that this fully
generalizes, something which must be verified. Here, pressure profiles are sampled from a
distribution that can represent many practical bubbly flow problems. Yet, the method is not
guaranteed to generalize well for drastically different external forcings. The former caution stems
also from the fact the used neural network is trained on a fixed time step, which may result in
poor generalization for cases with much faster dynamics.

Section 2 formulates a model problem that serves as the basis for the proposed extension
of CHyQOMOM, namely the dynamics of a population of cavitating bubbles whose statistics
are significantly non-Gaussian. In §3, the new hybrid method is described. Section 4 shows
that this approach can improve low-order moment predictions while extrapolating out of the
moment space to compute required high-order moment predictions. This section also investigates
the utility of additional quadrature points whose locations are selected by the recurrent neural
networks (RNN). It also compares the computational costs of the present approach and the
classical CHyQMOM. Section 5 summarizes our conclusion.

2. Problem formulation

(a) Ensemble-averaged flow equations

This work focuses on the fluid-coupled dynamics of a dispersion of small, spherical bubbles
transported in a compressible carrier fluid. The mixture phase-averaged evolution equations for
the continuous fluid are

ap

— 4+ V- (pu)=0,

or TV (o)

apu

W +V. (,ouu—l—pI):O (21)

and E—f—V-(E—f-p)u:O,

ot
where p,u,p and E being the mixture density, velocity vector, pressure and total energy,
respectively. The system of equations is complemented by appropriate initial and boundary or
radiation conditions specific to each individual problem. The void fraction of the bubbles is e and
a dilute assumption o <« 1 is made. The bubbles are defined by their instantaneous bubble radii R,
its time derivative R. The bubbles are assumed monodisperse and so have the same equilibrium
radius R,.
The mixture pressure p is deduced from the ensemble phase-averaging method [37,53] as

Rspbw 3R2
P—(l—a)PerOt( = -p = |

2.2)

where py,, and p; are the bubble wall and liquid pressures, respectively [54]. Liquid pressure p;
follows from the stiffened-gas equation of state [55], though this model can be substituted for
another if required. The usual coefficients for water are used [53].

The overbars in 2.2 denote raw moments p of the bubble dispersion as

RIR = pij= J RIRIf(R,R; R;) dRdR, (2.3)
2

where f is the number density function of the bubbles. This paper focused on a new, improved
method for computing these moments, which will be introduced in §3.
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The void fraction transports as [53]

9 R2R
X U Va=3a——. (2.4)
ot R3

The moments required to close the governing flow equations are thus

I"'Targ. = {R3R2/ ﬁ/ @/ Rspbw}~ (25)

(b) Bubble model

To close the governing equations of the previous subsection, a model for the bubble dynamics, in
terms of the dynamical variables R and R, is required. We use a Rayleigh-Plesset equation for this

L 3., 4R [RN\¥ 1
RR+-R2+ ——=(=2) - — 2.

*3 Re R ( R ) Cy’ 26)
which is dimensionless via the reference bubble size R, liquid pressure py and liquid density pg.
In (2.6), Cp is the ratio between the fluid and bubble pressures and Re is a Reynolds number

_ [PRe

Re ,
00 Vo

(2.7)
where 1y is the liquid kinematic viscosity. For the cases considered here Re = 103.

This model assumes the bubbles remain spherical and compress via a polytropic process with
coefficient y =1.4. While this model can be generalized to include heat exchange and liquid
compressibility, these effects are not critical to our study and thus omitted here. Based on this
model, the bubble wall pressure py,, simplifies the last moment of p1arg, as

R3ppy = 143(1-1),0- (2.8)

We also define a dimensionless time t* = twy, where wy is the natural frequency of the bubbles.
To simplify the notation, t will be used in place of +* hereon.

(c) Population balance formulation

A number density function f describes the statistics of the bubbles. The generalized PDE is

of 8 .. 0 .
3 + IR R) + ﬁ(fR) =0, (2.9)
assuming the bubbles do not coalesce or break up, though these effects can be included
via empirically modelled terms if desired. QBMMs solve (2.9) by representing f as a set
of raw moments p [39,44]. Through an appropriate inversion procedure, these methods can
transform these moments into quadrature nodes and weights in phase space. This allows for the
approximation of f via a weighted sum of Dirac delta functions. Hence, the following quadrature
rule can approximate any raw moment:

ij =) WkEl L&) (2.10)
k

where §; is the j-th quadrature point locations for the i-th internal coordinate.

3. Hybrid quadrature moment method formulation

We now present the hybrid, data-informed method for predicting the moments of cavitating
bubbles. Section 3(a) presents 4-node CHyQMOM predictions [39]. Section 3(b) details the hybrid
neural-network model that improves the predictions.
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(a) Conditional hyperbolic method of moments

For two-dynamic-variable cases, conditioned moment methods are computationally preferable to
traditional QMOM [43]. We use CHyQMOM because it can close a second-order moment system
with fewer carried moments than CQMOM [44]. For a 4-node quadrature rule, it uses the first-
and second-order moments

= {110, 10,1, 42,0, 11,1, 40,2}, 3.1

in tandem with a Gaussian closure assumption for the third-order moments 3, 103. The
particular chosen scheme displayed similar fidelity with more involved quadrature schemes [43]
for the bubble dispersions discussed here. The CHyQMOM inversion process for obtaining the
nodes & and weights w is presented in appendix A.

Taking the time-derivative of each of the (3.1) moments and applying (2.6) results in

1,0
o =MoL
3;;(;,1 _ —%/1-71,2 _ %Mfz,l + 1—a0 — Cpr-1,0,
B’Sfo o (3.2)
3’;1/1 - —%MO,Z - Rie“_l’l +ur-30—Cp
o 8;;(;,2 = Bu_13— R%lbﬂ +21-41—2Cpu_171,

which are called the moment transport equations. The quadrature rule (2.10) approximates
unclosed moments in (3.2).

While this scheme is computationally cheap, it is challenging to extend to include additional
quadrature points without potential numerical instabilities or need to decrease the time step
[41]. Thus, truncation errors can affect approximation of the right-hand side of (3.2) and the
extrapolation out of the low-order moment space to the moments of p1arg, of (2.5). We next present
an augmented method that treats these issues without introducing numerical instability or high
computational cost.

(b) Data-informed corrections

We improve the CHyQMOM moment inversion procedure by adding a correction term to
the 4-node quadrature rule and introducing additional quadrature nodes. The unaugmented
CHyQMOM quadrature rule is denoted via {w( QMM g(QBMM) 1,

For these corrections, a long short-term memory (LSTM) RNN is employed. The LSTM
incorporates non-Markovian memory effects into the reduced-order model. This approach is
known to be capable of improving predictions of reduced-order models [46,56].

The corrections {w’, &'} serve as input predictions for the first- and second-order moments as
well as the pressure {u1,0, 10,1, 42,0, 11,1, 10,2, Cp}. They are modelled as

{w'(t), &' (1)} = GLO; n(x (1)), Cp(x (1)), Rel, (3.3)

where G denotes the functional representation of the employed neural networks, the vector &
denotes hyperparameters and optimized parameters of the neural network as obtained during
training. More detail on the implementation is in §4a. The chosen values for the hyperparameters
are included in appendix B. The history of the reduced-order model states is

x)={t,t—11,...,t — N} (3.4)
The hybrid quadrature rule follows as:

w=wPBM) 45 and g=£(BMM | ¢ (3.5)
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The neural network loss function is designed to ensure the target high-order moments pur
can be accurately computed and that the low-order moments u evolve accurately. Hence, the
right-hand side of (3.2) is included in the loss function as

MY 5, M0\ e
1,
L= 3 oj| ———— + ) B (Zwksl i i) )> +2 ) Relu(—wy),

0<i,j<2 (ij)eT k
(3.6)
where

T={(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),(3,2),3 - 3y,0)}, (3.7)

and (MC) 11

I - MO) |71

wj= | —2 and ;= u; )H (3.8)

o0

The variables { ,uz(.]ML) , u( MO) }

approach and by MC 51mulations, respectively. The first term in (3.6) minimizes, in the L2 sense,
the right-hand sides of (3.2) (given u). The second term in (3.6) minimizes prediction error for both
u and ptarg., while it also penalizes the network when the weights do not sum up to 1 (under the
assumption that 1100 = 1). The last term in (3.6) penalizes negative-valued weights.

The discretized moment transport equation (3.2) and the quadrature rule (2.10) compute the
time-derivatives 9 u ML) /0t required in (3.6) as

correspond to moment u;; as predicted by the proposed hybrid

(ML)
3M
= Z wWid1k
(ML)
A1ty ,1 3 1., 4 5
a2 Xk: Wik 62k~ 7, Xk: Wik bk
+ ) wEE —Cp Y widr
k k
(ML)
0
—r =2 Xk: Wik k2 k (3.9)
ML
(1 1 ) 1 5 4 1 L
a9t 2 Z Wiy — Re Z wiy ok + Z Wiy — )
k k k
(ML)
ad o, B 8 -
and at =33 wkgl,klsg,k ~ Re > wkél,féik
k k
+2) Wiy ok —2Cp ) Wiy ok
k k

Once trained, the scheme
(ML)
— (w, &},

results in a new quadrature rule that evaluates the right-hand side of (3.2). The moment transport
equations (3.2) then evolve via an adaptive fourth-order Runge-Kutta time stepper. Algorithm 1
describes this procedure.

The baseline 2-by-2-node scheme of [44] imposes certain symmetry assumptions for the
reconstructed NDE. In general, this may be non-physical for bubble populations. A more
physically consistent approach may be [43]. However, the proposed hybrid scheme varies the
positions of the baseline quadrature scheme. Therefore, it allows for non-symmetrical NDFs
while, contrary to [43], only resolving moments up to order 2 as input for scheme. The method of
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[43] may also be considered when generalizing the hybrid approach to high-order schemes. This
is because the realizability condition of [44] is meaningfully different when more than 2 nodes are
used per direction, rendering it more restrictive.

Algorithm 1: Hybrid CHyQMOM.
Input: p={p1,0, 0,1, 42,0, 11,1, H0,2}; Cp, Re.
Data: NN architecture, CHyQMOM method, 4th-order-accurate Runge- -Kutta (RK4), Re,
Cp, time interval t € [0, T], error-tolerance 7y, maximum time-step 8tmax-
Result: p(t;) and ptarg (f) for i=0,1,...,n
1 Train DMP with DM,

2n<0;
3 whilet < T do
4 S < t;
5 ’w(QBMM),E(QBMM)]=CHyQMOM[u.(S)] Il x
6 Moment inversion {w’, &'}(s)=G [u.(s); {w(QBMM),S (QBMM) }(s), Cp(s)] Il x
7 ML correction {w,E}(s):{w(QBMM) +w’, £(QBMM) 4 £ ’}(s) Il %
8 Set quadrature rule {u, wr, 9t/ 8t}(s):Quadrature[{w,§ }(s)] Il
9 Project to moment space §t < 8tmax;
10 flag < 1;
11 while flag > 1 do
12 ot < 6t/2;
13 u1(5+5tmax)=RK4[{p,, /o) (s); at] I«
14 Evolve low-order moments uz(s+8tmax):RK4[{y., ap/ot}(s); St/Z] I %
- 1 _ 2
15 Evolve low-order moments flag <— Floor [Ogrlr_}_amx52 ”“l, m ™ Pim 2/ Ttol]
16 end
17 t < s+6t;
18 n=n+1;
19 end

Note that the closure terms need to be evaluated at times t, t 4+ §¢/2 and t + 8t. The neural
network does not make predictions at t + /2, so the equations are instead integrated in time by
25t instead of 5t.

4. Results

(a) Pressure signals

The capabilities of the data-enhanced CHyQMOM method to predict the statistics of bubble
populations are explored. The pressure term C, excites the bubbles causing oscillations. The
representation of C, used here should be general enough to include pressure profiles seen in
actual fluid flows. In a generic framework, let C, have a finite Fourier series expansion

N
Cp()=1+ ) o;sin[2nfit + ¢], (4.1)
i=1

where t corresponds to non-dimensional time, non-dimensionalized by the natural oscillation
frequency of the bubbles wy, f; are the included dimensionless frequencies, and «; and ¢; are
the corresponding amplitude and phase. It is stressed that C, =1 corresponds to the equilibrium
pressure of the bubbles (for which R =1 and R =0).

stz s i s [
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Most cavitating flow applications do not contain pressure frequencies higher than the natural
oscillation frequency of the bubbles [57] (with a notable exception of some high-intensity focused
ultrasound treatments). We operate under this constraint hereon, though higher frequencies could
be included if desired. On the other hand, very low frequencies are uninteresting because they
cause the bubbles to evolve quasi-statically. Hence, without significant loss of generality, the
dimensionless frequencies of C, are in the interval [1/10,1/5]. The phases of the waveforms that
make up C, are independently sampled from a uniform distribution ¢/ in [0, 2]

¢ ~U(0,27]), i=1,2,...,6. (4.2)

Applications dictate the possible observed pressure amplitudes. For example, significantly low
pressures are not relevant for most applications. To set an empirical threshold approximating
this condition, the pressures must not cause the used MC simulation configuration to become
numerically unstable. The solver itself uses an adaptive third-order Runge-Kutta scheme with
minimum time step 107® and relative error tolerance of 10~7. Thus, we design a pressure
distribution from which all samples are numerically stable and physically realistic. Algorithm
2 details this process.

Algorithm 2: Forcing Amplitude Sampling.
1 o;~U([0,1]), i=L2,...,6;

2 o« 21-6:1 o;

3 o < max (504/3)0(1, i=1,2,...,6

Previous experimental works can also be used to justify that the forcing constraint in
algorithm?2 avoids abrupt cavitation. This is estimated by the cavitation number

_ 1 —py(To)/po
g = 27
,OUO/ 2po
where py(Ty) is the vapour pressure of the liquid at reference temperature Ty and Uy is the

reference velocity [57]. If the liquid cannot withstand negative pressures then vapour bubbles
appear when the liquid pressure is py. Thus, nucleation occurs when

z—min{cp(?_l}. (4.4)
t )OUQ/ZPO

Without loss of generality, we can choose ,ou(% /(2pp) =1 to simplify the following calculations.
For flows around axisymmetric headforms, with Reynolds number in the range of 4.5 x 10°, if
o <0.40, the formed nuclei grow explosively up to a certain bubble size [58]. This phenomenon
renders numerical simulations for flows with ¢ <0.40 considerably more expensive compared

(4.3)

with o > 0.40 cases in order to achieve the same numerical accuracy. For the pressure profiles
presented here, the case o < 0.40 is avoided when using algorithm 2.

Figure 1 shows example pressure profiles C,(t) that are used to test the fidelity of the hybrid
moment inversion method. Herein, the end of this time window, t € [40,50], is used to assess
model fidelity. This enables the bubble dynamics to evolve from a specific initial state to one more
representative of those found in actual flows.

(b) Long short-term memory recurrent neural network training procedure

We simulate 1000 samples of individual bubbles for each realization of Cy. The bubbles are
initialized via samples from normal distributions with variances o = 0.05? and 01% =0.052 for
R and R, respectively. The values of R and R are sampled independently from one another. The
choice of initial distributions, given small variance, is not particularly important for the evolution
of the statistics. Each case is evolved until t = 50, which in this dimensionless system corresponds
to 50 natural periods of bubble oscillations. The individual bubble dynamics are then averaged to
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case 1 case 2 case 3 case 4
1.6 F T T T =
S 10R) PN
04 | | | | =
0 10 20 30 40 50

t

Figure 1. The time-history of example realizations of (,. Comparisons of the time-history of the evolved moments 4 and target
moments 4 Targ, between different numerical schemes are performed in the shaded time-interval t € [40, 50]. (Online version
in colour.)

—a—Hg —o—Ho1 —— 3y —F— 4,
107! T T T T T T T T

L2-error

10—4 . . .
102 103 10* 10°

Figure 2. [2-error of MC data for variable N compared with reference MC data with N = 10°.

(a) = QBMM ® hybrid b) = QBMM e hybrid
1
4 4 1
(ii) (iii)
» (i) _ me @iv)
2 S © 10! 2 By, © 10!
p = - K
> L] ~
@ L, X on 1
=0 107 o &g 107 &
) o - = on S~
- on—o-BO
-2 " . @) 1073 -2 = o 1073
[ ® mo
(ii) (ii)
-4 1074 —4 104
02 04 06 08 10 12 02 04 06 08 10 12
R

Figure 3. Temporal snapshots of f computed via Monte Carlo and the positions of the quadrature nodes for the 4-node
CHyQMOM quadrature scheme (QBMM) and the 4- and 5-node hybrid CHyQMOM quadrature schemes (hybrid). The labels (i—v)
correspond to times t = 43.9, 44.1,44.2, 44.4 and 44.6, respectively. (a) 4-node and (b) 5-node. (Online version in colour.)

obtain the MC reference statistics for each C,, realization. To showcase that 1000 samples provide
MC data of adequate accuracy, figure 2 shows the L2-error for a particular set of moments as the
number of samples N increases, compared with reference MC data with N = 10°.

For the numerical investigation, 200 samples of C, from (4.1) are used. From these, 50 are
randomly selected for training, with the remaining 150 cases used during testing. The number of
samples used for training deviates from common practices (where about 80% of data are used)
and instead is chosen so that it is large enough to avoid over-fitting but small enough to still allow
for the sampling of qualitatively different pressure profiles during testing. The neural network
includes 28 hidden units and is trained on the entire time history of each of the 50 selected samples
of Cp. Figure 3 shows f and the & for one realization of C, at different time instances. The same
figure displays the CHyQMOM nodes as estimated by both the standard 4-node CHyQOMOM
scheme and the 4- and 5-node hybrid schemes.

During training, the LSTM memory size is set to 256 time-instances, with each 8¢ = 0.01 apart.
The Adam method [59] trained each neural network for 500 epochs, minimizing the loss function

R e M e e



Downloaded from https://royal societypublishing.org/ on 22 June 2022

(a) casel (b) case 2 (c) case 3 (d) case 4

(1) * = WM QBMM @ hybrid
1

| | | | o

107! ] 107! ™
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MC O QBMM O hybrid

(i)

(i) 1.9

10
0.6

Figure 4. Low-order moment evolution for 4-node CHyQMOM and hybrid CHyQMOM methods. Results compare against
surrogate-truth Monte Carlo (MC) data. (Online version in colour.)

(3.6). A table with the values of the hyperparameters of the neural networks is presented in
appendix B. A fourth-order Runge—Kutta adaptive time stepper evolves the predictions of the
hybrid scheme. The time integration scheme is adaptive, but the neural network predictions are
uniform, so the neural network corrections are limited to the associated fixed time step 8¢ =0.01.
To initialize the neural network during testing, the MC data for the time-interval [0,0.31] are used
as input.

(c) Low-order moment evolution and error quantification

The model-form relative error is computed via a discrete L? error

W | Sl ) — w2
6l,m = N; (MC) /, \12 s (45)
Zi:l[ul,m ()]
where (MC) indicates Monte Carlo surrogate truth data and = {ML, QBMM]}. The t; are Ny =
5000 uniformly spaced times in the interval ¢ € [0, 50]. Results regarding the low-order moments
are presented in figure 4.

Figure 4(i) shows el"jm for the first- and second-order moments p for the 4-node schemes. Rows
(ii)—(iv) show the evolution of select moments for f € [40, 50] and row (v) shows the corresponding
Cp. All results correspond to four randomly selected testing samples (a—d) as labelled. We observe
a smaller € for the hybrid scheme than standard CHyQMOM for all four cases considered.
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Figure 5. Comparison of predictions of target moments gt 7, for Monte Carlo data (black line), CHyQMOM predictions (red
squares) and hybrid CHyQMOM predictions (blue circles) for 4 quadrature nodes. (Online version in colour.)

The largest errors for both approaches appear for moment o> (row (iv)), which exhibits large
and intermittent fluctuations when the bubbles collapse. The CHyQMOM method deviates most
from the MC surrogate-truth data during intervals of high compression (small Cp), with hybrid
CHyQMOM tracking the reference solution more accurately. Thus, the observed increase in
accuracy varies significantly from case-to-case and moment-to-moment, from 10 times smaller
errors to only 20% improvements. The evolution of the L? error for Case 2 is shown in figure 8
of appendix C.

(d) High-order moment extrapolation

The next quantity of interest is the L2-error in predicting the target higher-order moments MTarg.-
Figure 5 presents these results for the same four testing samples presented in figure 4. For
all moments (ii)~(iv), hybrid CHyQMOM significantly improves the predictions of prarg.. This
improvement is associated with the more accurate evolution of the low-order moments p and
these targeted moments in the neural network training procedure.
To better study the typical reduction in error for the 4-node hybrid CHyQMOM scheme, we
compute the per cent improvement of the L error as
(QBMM) (ML)
Q=100 ____Im (4.6)

(QBMM)
6l,m
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Figure 6. Histogram of 12-errorimprovement Q for hybrid CHyQMOM over traditional CHyQMOM for example (a—d) low-order
moments and (e—f) target high-order moments. Cases are drawn from 150 realizations of C,.. (Online version in colour.)

Figure 6 shows a histogram of Q calculated for example low-order moments p and target
moments fTyrg - For all testing samples, the 4-node hybrid scheme improves the accuracy of the
standard CHyQMOM method.

Furthermore, for both low-order moments (1) and target moments (i 1arg ), the error is reduced
by more than 50% for more than 80% of the sampled C, cases. Target moments ptarg exhibit
L?-error improvement ranging from 5 to 96%. The variation in error improvement is due to the
amplitude range of the sampled C, and how closely the time series of Cp, corresponds to one of
the training samples. Thus, results can improve by including more training samples.

(e) Additional quadrature nodes

Another potential route to method improvement is to increase the number of quadrature nodes.
While the number of quadrature nodes can change, the evolved moments remain p. The
algorithm for this is included in appendix A (algorithm 3).

To quantify the effect of this change, Ell, 1/112 (%) is computed, which is the median El(ji
the 150 test samples. We then define

€rror among

1/2
€17 (ML)

Cim =, (4.7)
€/ (QBMM)

to quantify the decrease in the L?-error when using higher-node-count hybrid CHyQMOM
compared with the standard 4-node CHyQMOM.
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Figure 7. Median error decrease while using hybrid CHyQMOM over 4-node CHyQMOM for different numbers of nodes for the
hybrid CHyQMOM scheme. (Online version in colour.)

Figure 7 shows that the accuracy of the hybrid predictions is improved as the number of
nodes N increases. However, the error improvement gains diminish once 7 nodes are reached.
Furthermore, including additional nodes to the quadrature rule increases the computational time
needed to perform a single time-step evolution for the system. The computational cost of 4-node
hybrid CHyQMOM per time-step is 8.9 times the cost of CHyQMOM. For 5, 6 and 7 nodes, the
hybrid method costs per time step are 11.5, 13.8 and 16.2 times that of 4-node CHyQMOM.!
Hence, diminishing improvements are observed as the number of nodes increases to more than
6, as the simulations require significantly more computations per time step for comparable
accuracy.

5. Conclusion

A data-informed conditional hyperbolic quadrature method for statistical moments was
presented. The method was applied to the statistics of a population of spherical bubbles
oscillating in response to time-varying randomized forcing. The forcing is designed to resemble
any possible function with a banded frequency spectrum from 1/5 to 1/10 the natural frequency
of the bubbles. Results showed that the method reduces closure errors when compared against
a standard 4-node CHyQMOM scheme. The hybrid method reduced errors more significantly
for the extrapolated higher-order moments that close the phase-averaged flow equations. This
improvement was achieved via RNN that include time history during training and were trained
using a fixed time-step. This result is significant because higher-order QBMM schemes are
generally numerically unstable for this problem, so another approach is required to improve
accuracy. Thus, while the presented hybrid scheme is about a factor of 10 more expensive
than CHyQMOM, its numerical cost should be viable for many applications. Furthermore,
the presented method can be effectively applied to any dynamical system with non-Gaussian
statistics where high-order moments are of interest. The encouraging results presented here, allow

I These simulations were performed using Py @BMM i b [39] on a single core of a 2.3 GHz Intel Core i9 CPU.
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for the consideration of future work in the application of the method to both phase-averaged
flows and general dynamical systems.

Data accessibility. This work presents a novel data-informed scheme for the statistics of bubble dynamics. The
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Appendix A. Conditional hyperbolic method of moments inversion algorithm

This is the inversion algorithm for the 4-node CHyQMOM scheme. Given the first- and second-
order moments {1,0, 40,1, 42,0, 11,1, 40,2} it computes the nodes (&;, £)and corresponding weights
w; for i=1,2,3,4, in phase-space. In this work, we assume p09 =1. To tail the algorithm to our
hybrid scheme of arbitrary number of quadrature nodes, the algorithm adds some fictitious extra
nodes to the scheme with zero-valued weights to match the desired number of nodes of the hybrid
scheme.

Algorithm 3: CHyQMOM inversion algorithm.

1 w;=0.25, 1<i<4,;
2 w;=0.00, 4<i<N;

3 0R=\/120 — Ui

4 azﬂl,l_(/:l:,UHU,l;

_ 2_ 2.
5 OR=y/H0,2 — @7 — g9/
6 &§i=u1,0toR;

7 §=p1,0+0R;

8 &3=H1,0 — OR;

9 E4=p1,0 — OR;

10 &=pn10, 4<i<N;
1 E1=po1+a+op;

12 52=M0,1+0t — OR;

13 %‘:3=/L0,1 —a+op;

14 §4=po1 — o — Op;
15 éizl’(/o,l/ 4<i<N

stz s s i weiinsomsosiioonio [
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Appendix B. Neural network hyperparameters

Table 1. Hyperparameters used to train the neural networks.

hyperparameter

recurrent activation function hard sigmoid
.......................... d ropoutcoefﬁclentow
.......................... r ecurrentdropoutcoefﬁaent010
.......................... Gy
.......................... Kernellmtlallzerzeros
.......................... s
.......................... L
.......................... h|ddenun|t528

Appendix C. Evolution of mean-square error

Evolution of L2 error as time progresses, defined as

PR () T ()
YE e (&)

Ei (k)= (€1

where (MC) indicates Monte Carlo surrogate truth data and * = {ML, QBMM} and k denotes the
last time step till which the error is calculated. Results are presented for Case (2) of figures 4
and 5.
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