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Abstract
An optimal sequential experimental design approach is developed to computationally characterize soft material properties at
the high strain rates associatedwith bubble cavitation. The approach involves optimal design andmodel inference. The optimal
design strategymaximizes the expected information gain in a Bayesian statistical setting to design experiments that provide the
most informative cavitation data about unknown soft material properties. We infer constitutive models by characterizing the
associated viscoelastic properties from measurements via a hybrid ensemble-based 4D-Var method (En4D-Var). The inertial
microcavitation-based high strain-rate rheometry (IMR) method (Estrada et al. J Mech Phys Solids 112:291–317, 2018)
simulates the bubble dynamics under laser-induced cavitation. We use experimental measurements to create synthetic data
representing the viscoelastic behavior of stiff and soft polyacrylamide hydrogels under realistic uncertainties. The synthetic
data are seeded with larger errors than state-of-the-art measurements yet matches known material properties, reaching 1%
relative error within 10 sequential designs (experiments). We discern between two seemingly equally plausible constitutive
models, Neo-Hookean Kelvin–Voigt and quadratic Kelvin–Voigt, with a probability of correctness larger than 99% in the
same number of experiments. This strategy discovers soft material properties, including discriminating between constitutive
models and discerning their parameters, using only a few experiments.

Keywords Viscoelastic material · Bayesian optimal experimental design · Data assimilation · High strain rate · Measurement

1 Introduction

Large and rapid deformations in compliant soft materials,
such as those caused by shock waves or lasers, can lead to
mechanical failure. Cavitation may occur when these mate-
rials are exposed to tensile waves, leading to high strain
rates (103 − 1081/s). Energy-focused cavitation, when used
appropriately, can benefit biologic, medical, and surgical
applications, including tissue phantom studies, laser surgery,
and DNA manipulation in target cells [1–5]. However, accu-
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rate characterization of realistic soft materials and biotissues
under such high strain rates and large deformations is chal-
lenging due to their common high compliance [6, 7], and
mechanical behavior beyond the linear elastic regime [8, 9].
Therefore, to predictmechanical behavior at high strain rates,
the constitutive response of the underlying tissue must be
faithfully represented.

Inertial microcavitation-based high strain-rate rheometry
(IMR) has been proposed by [10] for characterizing com-
pliant materials at finite deformations and fast speeds. This
high-strain rate rheometer combines laser-induced cavita-
tion with physical bubble dynamics models to estimate the
viscoelastic properties of hydrogels through observations of
the bubble radius time history. The IMR method has been
applied to characterize the mechanical behavior of com-
monly used biomimetic hydrogels, including polyacrylamide
(PA) [10–12], agarose [13, 14], and gelatin [15]. The time
efficiency of the cavitation experiments, however, is lim-
ited by factors such as the chemical, degassing, and swelling
protocols necessary to create pristine samples for character-
ization [10, 16]. Therefore, an experimental design strategy
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is necessary to efficiently probe material responses to dif-
ferent physical mechanisms, such as deformation, pressure,
and thermal effects, while preserving experimental or com-
putational resources. This design approach is intended to
be robust for characterizing soft materials under different
sources of uncertainty, including variations in experimental
configuration and observational noise. We use the computa-
tionally efficient IMR method to develop a simulation-based
optimal experimental design (OED) approach for material
parameter characterizations and the physical models and the-
ory that underpin them.

The IMR-based OED seeks to optimize the design of
cavitation experiments to yield the most informative data
about the viscoelastic properties of the unknown material.
Following the decision-theoretic approach by [17], the rel-
ative entropy, or Kullback–Leibler (KL) divergence, from
the posterior to the prior within the Bayesian statistical
setting is often used to measure the information provided
by an experiment. Therefore, the design process focuses
on optimizing the expectation of this utility function, also
known as the expected information gain (EIG). However, the
direct calculation of the EIG is hindered by the intractabil-
ity of the inherent double-loop integral, which is due to the
absence of closed forms and the inability of conventional
Monte Carlo (MC) methods. Nonlinear models complicate
the analytical integration of likelihood functions or posterior
distributions, necessitating computational methods. Differ-
ent approaches have been proposed to numerically evaluate
the EIG, including nested Laplace approximations [18–21]
and nested Monte Carlo (NMC) estimators [22–26]. The
Laplace approach systematically introduces bias, though
NMC provides accurate estimators using a finite number of
Monte Carlo samples.

Variational methods have also been incorporated into the
EIG estimators to improve the convergence rate and accu-
racy [27, 28]. Readers are referred to [29] and [30] for reviews
on this topic.With appropriate EIG estimators, the remaining
task of Bayesian OED (BOED) is to optimize the EIG within
the domain of design variables. Multiple optimization meth-
ods have been considered, such as simulated annealing [31],
interacting particle systems [32], stochastic optimization [24,
33–35], and Bayesian optimization (BO) [27, 36, 37]. The
absence of an EIG gradient, the high computational cost of
individual evaluations, and the prevalence of local optima
in the search space often constrain the optimization of the
EIG for complex nonlinear systems. Given these difficul-
ties, BO is particularly effective as an optimizer due to its
data efficiency, ability to balance exploration and exploita-
tion, robustness to multi-modality, and capacity to handle
noisy observations, enabling efficient global optimization
of the design space with a manageable number of eval-
uations [38, 39]. We refer the reader to [40, 41] for a
comprehensive review and practical implementation of BO.

Instead of using the same design throughout the experimental
process, sequential or adaptive designs have gained popular-
ity in Bayesian design literature due to their flexibility and
efficiency [25, 42–44]. Unlike static designs, which use fixed
experimental configurations, sequential designs aim to max-
imize the expected utility at each stage of experimentation
based on the outcomes of previous experiments and possible
predictions of future ones. For cavitation rheometry, inferring
material parameters from bubble dynamics data is important
for proceeding with the sequential design.

We use data assimilation (DA) techniques for bubble-
dynamics-based rheometry to improve predictions in
uncertainty-prone high-strain-rate regimes. We combine the
IMR method with observational data such as bubble-radius
trajectories. The information needed to describe complex
systems comes from different sources and has different char-
acteristics, such as modeling assumptions and measurement
noise. Each source is unlikely to fully observe the system,
leading to information discrepancies between the theoretical
model and the data. DA rectifies this problem by address-
ing uncertainty in the model and the data. In particular, the
ensemble Kalman filter (EnKF) is an often-used DA tool
due to its simple conceptual formulation and relative ease of
implementation [45]. It achieves relatively high accuracy for
a small ensemble, approximating the state as a multivariate
Gaussian. Applications of EnKF include oceanography [46,
47], atmospheric science [48–50], and engineering [51].
Other variants of EnKF, such as ensemble Kalman smoother
(EnKS) [52], iterative EnKS [53, 54] and ensemble-based
four-dimensional variational method (En4D-Var) [55, 56]
have been explored. We refer the reader to [57] for a review
of common DA methods.

[58] incorporated ensemble-based DA methods with the
IMR solver to provide a scalable bubble-collapse rheometry
framework. It reduces the number of simulations required for
accurate characterizations from a large volume in the brute-
force curve fitting strategy in [10] to 48 ensembles, offering
computational advantages. The hybrid En4D-Var method
also requires fewer measurements per data set to characterize
themechanical properties of hydrogels [13, 58]. DAmethods
require appropriate theoretical models as a prior, yet they do
not provide information about how to select them. The most
direct approach is to choose the model that minimizes the
least-squares error. However, this approach does not consider
the uncertainty from different sources, such as experimental
setups or measurement errors. To address this, we use the
Bayesian model selection framework [59, 60] to systemati-
cally determine themodel probability in the presence of these
uncertainties. We consider a library of potential constitutive
models and calculate the likelihood of each model using the
associated posterior distributions. The model parameters and
probabilities establish the sample space and determine the
optimal EIG for optimal design. This approach systemati-
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Fig. 1 Schematic of the IMR-based sequential BOED. Given a mod-
eling parameter, θ = {M, φM}, which includes a constitutive model
and its material properties, and a design d that describes the experi-
mental setup (for example, the equilibrium radius), the IMR approach

numerically solved the spherically symmetric motion of bubble dynam-
ics. In computation, the complete flow states q include bubble radius,
bubble-wall velocity, temperature, and other variables, but they are only
partially observable and are denoted as y

cally and sequentially infers the model from measurements
via different experimental designs.

Figure1 shows a graphical overview of the sequential
BOED procedure we use herein. In Sect. 2, we introduce
the IMR method and use it to conduct efficient bubble cav-
itation simulations that provide the full flow states, q. The
optimal design process in Sect. 3 maximizes the EIG using
BO to design the most informative cavitation experiments,
denoted by d�. The model inference part in Sect. 4 char-
acterizes the unknown material properties, φM, of each
constitutive model, M, by analyzing the bubble dynamics
trajectories, y, using En4D-Var. Taken together, they form
the modeling parameter, θ = {M, φM}, that describes the
constitutive behavior of the soft material. Subsequently, the
marginal likelihood is used to calibrate themodel probability.
When the prior is updated using the posterior, one iteration
of the sequential design is completed. Soft material proper-
ties are shown to be accurately and efficiently characterized
by iterating optimal design and model inference processes.
The performance of the sequential approach is demonstrated
in Sect. 5 using two synthetic data sets for stiff and soft PA
hydrogels. Sections6 and 7 summarizes the main contribu-
tions and limitations.

2 Methods

2.1 Theoretical bubble dynamics model

Different spherical bubble dynamics models have been
explored in the pursuit of characterizing the viscoelastic
properties of surrounding materials; cavitation in soft mate-
rials is one prominent example [10, 61–64]. In these models,
the Keller–Miksis equation [65] is applied to govern the
spherically symmetric motion of bubble dynamics in a vis-
coelastic material assumed to be nearly incompressible.
Upon nondimensionalization using the maximum bubble
radius, Rmax, the far-field pressure, p∞, the surrounding
material density ρ, and the far-field temperature T∞, the
dimensionless Keller–Miksis equation is

(
1 − Ṙ∗

c∗

)
R∗ R̈∗ + 3

2

(
1 − Ṙ∗

3c∗

)
Ṙ∗2

=
(
1 + Ṙ∗

c∗ + R∗

c∗
d

dt

)(
p∗
b − 1

We Ṙ∗ + S∗ − 1

)
. (1)

The details of dimensionless parameters are summarized
in Table 1. The bubble contents are assumed to consist of
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two components: water vapor and gas considered to be non-
condensible, characterized by gas constants Rv and Rg , on
the time scales of inertial cavitation [66, 67]. This mixture
is assumed to be homobaric and follow the ideal gas law
and the time-dependent pressure inside the bubble, p∗

b(t), is
coupled to the energy equation [10, 64]. We assume that the
mass and heat transfer of the gases within the bubble obeys
Fick’s law and Fourier’s law. By neglecting the initial bub-
ble growth phase, the laser-induced cavitation model begins
when the bubble reaches its maximum radius and thermody-
namic equilibrium, R∗(0) = 1.

While the Keller–Miksis equation accurately describes
spherical bubble dynamics to first order in the Mach num-
ber, appropriate constitutive relations are necessary to model
the dynamic behavior of the surrounding media in terms of
the time-dependent stress integral, S∗(t). Combinations of
springs and dashpots, such as the Kelvin–Voigt andMaxwell
models, are often used to account for the change in strain rate
throughout the bubble expansion-collapse life cycles dur-
ing an inertial microcavitation event. We aim to develop a
systematicmethod for selecting appropriate viscoelastic con-
stitutive models for different gel specimens. To this end, we
examine a range of constitutive models for the surrounding
media, as described in Table 2. Specifically, the Kelvin–
Voigt model, incorporating either just a Neo-Hookean elastic
term [61] or an additional second-order strain-stiffening
term [11], often better represents the nonlinear viscoelastic
behavior at high strain rates [14]. These two models are dif-
ferent orders of Taylor expansion of the more general Fung
model [68]. More models are available, but they are beyond
the scope of this work. The stress integral associated with the
quadratic law Kelvin–Voigt (qKV) model is

S∗ =

quadraticlawKelvin−Voigt︷ ︸︸ ︷
Neo-Hookean Kelvin−Voigt︷ ︸︸ ︷

− 4U∗

ReR∗ − 1

2Ca∞

[
5 − 4

λ
− 1

λ4

]
+ α

Ca∞

[
177

20
+ 1

4λ8
+ 2

5λ5
− 3

2λ4
+ 2

λ2
− 6

λ
− 4λ

]
, (2)

where α represents strain stiffening when positive and strain
softeningwhen negative [69]. A lower bound ofα tomaintain
positive strain energy is α ≥ −2/

(
2λ2 + 1/λ4 − 3

)
. When

α = 0, 2 reduces to the same form of the stress integral for
the Neo-Hookean model, in which dynamic shear moduli are
used instead of the quasistaticmoduli to account for the strain
stiffening effect during cavitation. For more details, readers
are referred to [10]. Recently, [13] proposed a generalized
variant of qKV (Gen. qKV) that extends the capability to
accommodate variations in the ground-state shear modulus,
G∞, traditionally considered constant in the qKV model.
Later, we will adopt this Gen. qKV model to account for the
measurement error in the quasistatic shear modulus.

We use the modeling parameter

θ ≡ {M, φM}, (3)

to represent a candidate mathematical constitutivemodel and
its material properties. The design parameter is

d ≡ {We, R∗∞}, (4)

representing the experimental free parameters. Following
[10], in the physical context of interest, we regard densi-
ties, pressures, and temperatures as constants, though this
is not a restriction of the method. We use IMR to simulate
forward-time bubble dynamics with known error signatures,
which we represent as Gaussian noise in the model error and
measurement noise.

2.2 Numerical methods

The state vector is

q(t) = {R∗, Ṙ∗, pb, S∗, T ∗, C∗, 1/Ca, 1/Re, α}, (5)

where the state parameters represent the bubble-wall radius,
velocity, bubble pressure, stress integral, the discretized tem-
perature and vapor concentration fields inside the bubble, the
reciprocal-Cauchy and reciprocal-Reynolds numbers, and
the strain-stiffening parameter. The discrete-time nonlinear
dynamical system takes the form of

qk+1 = Fk(qk, d), (6a)

R∗
k+1 = H(qk+1), (6b)

where Fk is the nonlinear operator given the time steps, and
H is the linear observation function that maps the state q to a
point in measurement space. In this study, we designate the
bubble radius R∗ as the primary observable variable due to
its direct measurability in experimental setups. For a given
time interval t ∈ [0, T ] with Nt time steps, the deterministic
model outputs, Q̃ = [q1 · · · qNt ] , and the corresponding

bubble dynamics measurements, Ỹ = [R∗ · · · R∗
Nt ] , can be

collected as

Q̃ = F(θ, d) and Ỹ = H( Q̃), (7)
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Table 1 Dimensionless
quantities used in this
manuscript

Dimensional Dimensionless quantity Quantity name

Uc = √
p∞/ρ Characteristic velocity

λ = R/R∞ Material stretch ratio

t t∗ = tUc/Rmax Time

R R∗ = R/Rmax Bubble-wall radius

U U∗ = U/Uc Bubble-wall velocity

R∞ R∗∞ = R∞/Rmax Equilibrium bubble-wall radius

c c∗ = c/Uc Material wave speed

pb p∗
b = pb/p∞ Bubble-wall pressure

pv, sat(T∞) p∗
v, sat = pv, sat(T∞)/p∞ Vapor saturation pressure

C C∗ = 1/(1 + (p∗
b/p

∗
v, sat − 1))Rv/Rg Vapor concentration

T T ∗ = T /T∞ Temperature

Rmax We = p∞Rmax/(2γ ) Weber number

S S∗ = S/p∞ Stress integral

G 1/Ca = G/p∞ 1/Cauchy number

μ 1/Re = μ/(ρUcRmax) 1/Reynolds number

Table 2 Summary of
constitutive models under
consideration

Model M Description Material properties φM

Newtonian Fluid 1/Re

NHE [70] Neo-Hookean Elastic 1/Ca

NHKV [61] Neo-Hookean Kelvin–Voigt 1/Re, 1/Ca

qKV [11] Quadratic Law Kelvin–Voigt 1/Re, α, 1/Ca∞
Gen. qKV [71] Generalized qKV 1/Re, α, 1/Ca∞

whereF represents the nonlinear operator that creates the
space-time states at all time instances.

Following a procedure similar to [72], we incorporate the
deterministic IMR solver in (7) with the model error εm and
the experimental error εe to approximate experimental mea-
surements, such that

Qm = Q̃ + εm = F(θ, d) + εm, where εm ∼ N (0,�m),

and (8a)

Y = Ym + εe = H(Qm) + εe, where εe ∼ N (0,�e).

(8b)

The observation functionH is linear, so (8) can be written as

Y = Ỹ + ε = H ◦ F(θ, d) + ε, where ε ∼ N (0,�),

(9)

where ε is the combined error from the model and the exper-
iments, and the true bubble dynamics, Ỹ , are unobtainable
from themeasurements. In the following, (9) is used to create
synthetic measurements.

3 Simulation-based Bayesian optimal
experimental design

The goal of the optimal design procedure is to find a design
point, d�, within a given design space D that maximizes the
expectation of a utility function, u(d,Y , θ). That is,

d� = argmax
d∈D

E{u(d,Y , θ)} = argmax
d∈D

∫
Y∫

�

u(d,Y , θ)p(θ |d,Y)p(Y |d) dθ dY , (10)

where Y and � represent the parameter spaces for the obser-
vations andmodel parameters. The inference of parameters θ

can be obtained based on the prior distribution observations
and Bayes’ rule,

p(θ |d,Y)︸ ︷︷ ︸
Posterior

=
Likelihood︷ ︸︸ ︷
p(Y |θ, d)

Prior︷ ︸︸ ︷
p(θ |d)

p(Y |d)︸ ︷︷ ︸
Evidence

. (11)

The probability p(θ) can be separated as

p(θ) = p(M)p(φM|M), (12)
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which contains the probability of the mathematical consti-
tutive model M and the probability of the corresponding
material parameters. From (9), the likelihood function is

p(Y |θ, d) = 1√
(2π)Nt |�|exp

[
− 1

2
(Y − H ◦ F

(θ , d))�−1(Y − H ◦ F(θ, d))

]
, (13)

and the evidence is obtained through integration as

p(Y |d) =
∫

�

p(Y |θ , d)p(θ) dθ . (14)

The maximum information gain from the prospective exper-
iment follows from using a relative entropy utility function,
which is the same as the Kullback–Leibler (KL) divergence
between the posterior and prior [17], so

u(d,Y , θ) = DKL(posterior ‖ prior)

=
∫

�

p(θ |d,Y) log

[
p(θ |d,Y)

p(θ)

]
dθ = u(d,Y).

(15)

This choice of utility function is not a function of the param-
eters θ . The expectation of the KL divergence is then

E{u(d,Y , θ)} =
∫
Y

∫
�

p(θ |d,Y) log

[
p(θ |d,Y)

p(θ)

]
dθ p(Y |d) dY

(16)

=
∫
Y

∫
�
log

[
p(Y |θ , d)

p(Y |d)

]

p(Y |θ , d)p(θ) dθ dY , (17)

where the Bayes’ rule in (11) is applied. This quantity is
also known as the expected information gain (EIG). Further,
p(θ |d) = p(θ), as specifying d does not provide further
information regarding θ . In practice, the double integral in
(16) cannot be computed analytically and is expensive to
approximate. To address this, a double-loop Monte Carlo
(DLMC) estimator, also known as the nested MC (NMC)
estimator, approximates the EIG [23]. It is

EIG(d) ≈ μNMC(d) ≡ 1

N2

N2∑
j=1

log

[
p(Y ( j)|θ (0, j), d)

1
N1

∑N1
i=1 p(Y

( j)|θ (i, j), d)

]
, (18)

where θ (i, j) i.i.d.∼ p(θ) and Y ( j) i.i.d.∼ p(Y |θ (0, j), d). The
samples θ(0, j) are used to approximate the outer loop inte-
gral, while θ(i=1→N1, j) are used in the inner loop. To

obtain the dependent pair (θ (i, j),Y (i)), the importance sam-
pling technique is used: we first draw θ (i, j) from the prior
p(θ), and then draw Y (i) from the conditional distribution
p(Y |θ (i, j), d). In the computation, the samples θ (i, j) are col-
lected using the sample reused technique [24]. This technique
uses a batch of prior samples {θ (l)}N2

l=1 for both the inner and
outer Monte Carlo sums, reducing the computational cost
from O(N1N2) to O(N2). In the following, we use the nota-
tion NEIG to represent the sample size used for approximating
the EIG.

In practical settings, experiments and data collection for
inertial cavitation are carried out separately because hydro-
gel specimens must be prepared for different experimental
setups. Thus, a sequential experimental design is important
for this purpose. We assume that the experiment outcomes
are conditionally independent, given the latent variables and
designs,

p(Y1:NDes, θ |d1:NDes) = p(θ)

NDes∏
n=1

p(Yn|θ , dn). (19)

Having conducted experiments 1, 2, . . . , NDes−1, the design
dNDes for the prospective experiment can be obtained by
replacing the prior, p(θ), with p(θ |d1:NDes−1,Y1:NDes−1) in
(11) such that

p(θ |Y1:NDes, d1:NDes)

= p(Y NDes |θ, dNDes) p(θ |Y1:NDes−1, d1:NDes−1)

p(Y NDes |dNDes)

= ... = p(θ)
∏NDes

n=1 p(Yn|θ, dn)

p(Y1:NDes |d1:NDes)
. (20)

Similar to (18), the EIG for NDes is approximated in aMarko-
vian fashion as

EIG(dNDes) ≈ 1

NEIG

NEIG∑
j=1

log

⎡
⎣ p(Y ( j)

NDes
|θ (0, j)

NDes
, dNDes)

1
NEIG

∑NEIG
i=1 p(Y ( j)

NDes
|θ (i, j)

NDes
, dNDes)

⎤
⎦ , (21)

where θ
(i, j)
NDes

i.i.d.∼ p(θ |Y1:NDes−1, d1:NDes−1) and Y ( j)
NDes

i.i.d.∼
p(Y |θ (0, j)

NDes
, dNDes). Through this procedure, we conduct an

adaptive sequential experiment that iteratively optimizes the
selection of the design dNDes at each step. For each such step,
we solve a sequential optimization problem

d�
NDes

= argmax
dNDes∈D

EIG(dNDes), (22)
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Given an EIG estimator, different methods can be used for
(22), including some specifically developed for BOED [24,
31, 32]. Here, Bayesian optimization (BO) is selected for the
subsequent design optimization, given its advantageous fea-
tures such as sample efficiency, robustness tomulti-modality,
and inherent capability to handle noisy objective evalua-
tions [73]. Following [41], we use the Ard Matérn 5/2
kernel for Gaussian process (GP) regression and the expected
improvement criterion for the acquisition function. Further
details are provided in appendix A. [73] showed that the
expected improvement can be unreliablewith a small number
of initial data points. To improve the quality of GP, they rec-
ommend selecting several initial design points in a random
quasi-uniform arrangement. This strategy creates amore rea-
sonable initial GP model [74–76]. In practice, we initialize
BO by evaluating the EIG values at NInt random designs. A
total number of NBO BO trials is used to obtain the optimal
design.

Algorithm 1 Bayesian optimal experimental design (refer to
Fig. 1b for graphical illustration)

Input: prior p(θ |d1:NDes ), error variance �, EIG sample size NEIG
Output: Next design point d�

NDes+1
1: Evaluate EIG for the NInt random points
2: for l = NInt + 1 : NBO do
3: Perform Gaussian process regression based on the evaluated val-

ues, {EIG(d(l ′)
NDes+1)}ll ′=1

4: Obtain next search point, d(l+1)
NDes+1, that maximizes expected

improvement
5: Evaluate EIG(d(l+1)

NDes+1)

6: end for
7: d�

NDes+1 ← argmax1≤l≤NBO+1 {EIG(d(l)
NDes+1)}.

1: function EIG(d; p(θ |d1:NDes ); NEIG)

2: Draw NEIG + 1 samples
(
θ (0), θ (1), . . . , θ (NEIG)

)
from prior

p(θ |d1:NDes )

3: Draw NEIG samples
(
Y (1), . . . ,Y (NEIG)

)
from the likelihood

p(Y |θ (0), d) with Gaussian error �

4: for i = 1 : NEIG do
5: Perform the IMR simulation for the design d using the param-

eter θ (i)

6: Evaluate the likelihood p(Y ( j)|θ (i), d) with Gaussian error �

7: end for
8: Calculate the EIG using (21)
9: end function

An algorithm for IMR-based BOED is outlined in Algo-
rithm 1. This strategy is systematic and identifies the optimal
design for the next experiment. The next step involves char-
acterizing thematerial properties based on themeasurements
of bubble dynamics.

4 Model inference

4.1 Data assimilation

With data collected from experiments or simulations on
inertial cavitation, the remaining task is to find the most
accurate model for characterizing bubble dynamics within
uncertainty-prone high-strain-rate regimes. Here, we adopt
the En4D-Var approach due to its computational effi-
ciency [13, 58]. We assume the variables follow a multi-
variate Gaussian distribution and use NEn ensembles, Q̃0 =(
Q̃

(1)
0 , . . . , Q̃

(NEn)

0

)
, to approximate this distribution based

on a given observed data set, YD, and a data assimilation
window size. Details of the standard En4D-Var method are
provided in appendix B, along with three enhancements
introduced here. First, the reciprocal-Cauchy and reciprocal-
Reynolds numbers, 1/Ca and 1/Re, are incorporated into the
state vector in (5) to guarantee Gaussian distributions of the
physical quantities, G and μ. Second, the parameter α can
be negative, corresponding to strain-softening, when the qua-
sistatic shear modulus, G∞, is overestimated. Third, instead
of performing En4D-Var for every measurement indepen-
dently and then collecting all the posterior ensembles, we
consider an iterative-restart strategy to reduce the computa-
tional cost and bias from the prior. A similar restart strategy
has been used in the restart-EnKF to address the dynamical
systems with strong nonlinearity [77–79]. We apply En4D-
var to the data mean, and the measurement noise matrix Pk

at each time step is obtained from the data. After obtaining
the posterior ensembles, we restart the data assimilation pro-
cess by drawing fresh samples from the inflated posterior
distribution. Here, the “Relaxation Prior to Spread” (RTPS)
scheme addresses the sampling error in ensemble methods
due to finite ensemble size [80]. The variances are updated
as

σi = σ
(post)
i + a

(
σ

(prior)
i − σ

(post)
i

)
, (23)

where a = 0.7 is an inflation parameter [58]. We repeat
this process, and the final posterior distributions are obtained
through Nruns complete cycles. Thus, the total number of DA
runs required is NDA = NiterNruns.

4.2 Model probability

After performing data assimilation for available models, the
next step is to choose models that best represent the exper-
imental measurements. The most straightforward way is to
select the model with the least-squares error. This strategy,
however, does not account for the uncertainty in measure-
ments. To tackle this, we calculate the probability of each
model from the En4D-Var outputs using the Bayesian model
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selection framework [59, 60]. Given the measurement data
YD, the marginal likelihood of each modelM can be calcu-
lated as

p(M|YD, d) = p(M)

p(YD|d)∫
�

p(YD|M,φM, d)p(φM|M, d) dφM. (24)

Similar to (18), importance sampling can be used to approx-
imate the marginal likelihood as

p(M|YD, d) ≈ 1

NEn

NEn∑
i=1

p(YD|M,φ
(i)
M, d), (25)

where φ
(i)
M ∼ p(φM|M, d). If one assumes the models can

fully represent the experiments, then
∑

M p(M) = 1. The
posterior probability of the modelM can then be normalized
as

p(M|YD, d) ∝ p(M|YD, d)/
∑
M

p(M|YD, d). (26)

The obtained posterior distribution,

p(θ |Y1:NDes , d1:NDes) = p(M|Y1:NDes , d1:NDes)

p(φM|M,Y1:NDes, d1:NDes), (27)

is subsequently used to update the prior for Algorithm 1 to
obtain the next optimal design point.

Algorithm 2Model inference (refer to Fig. 1c for graphical
illustration)

Input: target design d, prior distribution p(
(
φM,M) |d1:NDes )

Output: posterior distribution p(
(
φM,M) |YD, d)

1: Collect data YD at the design d with error �

2: for each model M do
3: for l = 1 : Nr do

4: Draw NEn samples
(
θ̃

(1)
0 , . . . , θ̃

(NEn)

0

)
from the prior distribu-

tion p(φM|M, d1:NDes )

5: Generate NEn initial ensembles Q̃0 =
(
Q̃

(1)
0 , . . . , Q̃

(NEn)

0

)
6: Perform En4D-Var with Niter iterations to update the ensem-

bles Q̃0
7: Perform covariance inflation and update the prior distribution
8: end for
9: Calculate the marginal likelihood p(M|YD, d) using (25)
10: end for
11: Normalize the model probability to obtain the posterior distribution

p(
(
φM,M) |YD, d)

12: Update the prior p(
(
φM,M) |d1:NDes+1) for Algorithm 1 to obtain

the next design point

An algorithm for IMR-basedmodel inference is presented
in Algorithm 2. Together with Algorithm 1, these form a

complete loop for the simulation-based characterization of
soft matter, as illustrated in Fig. 1.

5 Results

We demonstrate the proposed framework by using the IMR
method to create two datasets. The underlying models for
these datasets are chosen to mimic the viscoelastic behavior
of stiff and soft PA hydrogels [11]. The details are summa-
rized in (3). To align these simulation-based datasets with
real-world experimental measurements, we introduce syn-
thetic error to accommodate different sources of error. These
include uncertainties in measurement errors and aliasing in
the bubble response. The standard deviations of this syn-
thetic noise, σ = |R∗ − 1|/50 + t∗/160, are tailored to
depend on time and state, qualitatively reflecting experi-
mental measurements [10, 11, 14]. A longer duration of
measurement or being closer to bubble collapse will result in
a larger error, as illustrated in Fig. 4. A set of measurements
containing 100 R(t) curves is collected for each design.
We aim to accurately characterize the underlying model
with a minimum requirement of design iterations using the
optimal sequential design process, as shown in Fig. 1. We
consider two candidate models, NHKV and Gen. qKV, to
demonstrate the proposed framework at a reasonable com-
putational cost. The design is initialized with a probability
of 50%–50% for these two models. To better represent real-
world experiments, the optimization problems for the design
parameters are restrictedwithin the rangesWe ∈ [100, 1000]
and R∗∞ ∈ [0.14, 0.3] [10, 11, 13, 14]. In the computation,
the data assimilation window is set up to the first two peaks
of the bubble collapse. For each set of measurements, En4D-
Var is run Nruns = 3 times (with 2 restarts), using 5 iterations
for each run and an ensemble size of NEn = 48. This choice
of ensemble size follows [58]. Later, we will show that the
above setup is enough to characterize the underlying model
of synthetic data.

Computations are performed on PSC Bridges2 using
dual AMD 64-core CPUs (SKU 7742, Rome). The default
wall-clock time is 30min, and the memory per core is
1GB. The CPU hours required vary between the two mod-
els due to differences in automatic time step requirements
needed to address stiffness near bubble collapse. Generally,
a single design consisting of NBO = 15 BO trials with
NEIG = 1000 EIG samples and its subsequent DA process
requires approximately 200 CPU core hours when all simu-
lations are performed using the qKVmodel and an additional
200 CPU core hours when using the NHKV model. Quan-
titative assessment metrics include EIG, root-mean-square
error (RMSE) of the R(t) data and the relative error of the
material properties.
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Table 3 Summary of synthetic
datasets. The characterization of
these parameters from
experimental data are
demonstrated in [11]

Material Model M Parameters φM
G∞ (kPa) G (kPa) μ (Pas) α

Case 1 Stiff PA qKV 2.77 – 0.186 0.48

Case 2 Soft PA NHKV 0.57 8.31 0.093 –

5.1 qKV for stiff PA

We first consider qKV as the underlying model to approx-
imate the behavior of stiff PA [11]. We assume that the
quasistatic shear modulus can be measured with G∞ =
2.77 ± 0.3kPa, which has a higher variance than the experi-
mental measurements. The prior distributions of the mate-
rial properties are set as G = 15.09 ± 4.35kPa, μ =
0.209 ± 0.18Pas for NHKV and μ = 0.286 ± 0.186Pas,
α = 0.28 ± 0.48 for Gen. qKV. The latter has around 50%
error compared to the underlying truth,whichhas been shown
as a reasonable offset to validate the performance of DA [58].
Truncated Gaussian distributions [81] ensures μ > 0 such
that the material properties are physically interpretable.

We first show the results of the simulation-based BOED
in Sect. 3 using the aforementioned prior distributions as an
example. Figure2a shows theBOoutputs for different sample
sizes used to estimate the EIG. In general, the observed EIG
increases as the sample size grows. Even without additional
noise, the meaningful uncertainty in the initial model selec-
tion and material properties leads to a potential for gaining
information through experiments. As a result, the EIG values
are comparable for the same EIG sample size. Note that the
goal of BO is to explore specific regions of the design space
while maximizing the objective function based on available
evaluations. However, there is no guarantee that subsequent
evaluations will always yield better function values. This is
because, in addition to exploiting known high-value areas,
BO also emphasizes reducing uncertainty in the exploration
process, which may lead to evaluations that are not imme-
diately optimal but provide valuable information for future
optimization. With an initialization of 10 random trials, only
a few more trials are necessary to accurately identify the
optimal EIG values. These values are shown in Fig. 2b for
different sample sizes, where a decreasing trend in the slope
can be observed. A similar trend can be observed for the
relative error in the optimal design parameters. In the cur-
rent scenario, both the NHKV and qKV models have two
free modeling parameters. To estimate each EIG accurately
with a relative error of less than 5%, a sample size exceed-
ing 1000 is required, which is commensurate with about 13
CPU core hours of computational time. This cost increases
exponentially with the number of parameters [24]; for exam-
ple, theUpper-ConvectedMaxwellmodel [82]with three free
parameters could raise the cost to approximately 52CPUcore

hours, while the Oldroyd-Bmodel [83] with four free param-
eters will require hundreds of CPU core hours. Since a library
of constitutive models, ranging from simple to complex, may
be needed to accurately represent real-world data, sampling
efficiency in global optimization becomes a critical factor in
selecting an optimizer, a need that BO effectively addresses.
Additionally, BO provides a means to balance exploration
and exploitation, offering a more accurate estimation of the
entire phase space. For these reasons, we use BO for opti-
mization, even for the relatively simple case presented in
this work. Note that the EIG serves as a guiding variable
for identifying the optimal design, and its actual value is not
meaningful in this context. Based on these observations, we
will estimate the EIG using a sample size of NEIG = 1000
and perform NBO = 15 trials for BO in the design process
to achieve a reasonable balance between accuracy and com-
putational efficiency.

Next, we collect measurements at the optimal design and
perform data assimilation to obtain the posterior distribu-
tions. For example, Fig. 3 shows the DA outputs using the
initial prior distributions for Gen. qKV.As expected, the vari-
ance of the ensembles decreases with more DA iterations.
Despite an initial guess of approximately 50% error, using
En4D-Var enables accurate identification of the true material
properties. It can be observed that the restart strategy with
covariance inflation enhances the posterior distributions with
more restart runs, decreasing theRMSEof the ensemble R(t)
curves. Compared to the standard En4D-Var in [58], drawing
fresh samples when restarting helps avoid local minima due
to initial bias in ensembles.

The final step of the sequential design is to calibrate the
model probabilities based on the measurements and posteri-
ors. Figure4 shows the RMSE and themodel probabilities by
comparing the posterior R(t) curves to the measurements for
two designs. For each design, both models show favorable
bubble dynamics compared to the average of measurements,
resulting in similar RMSE. Still, considering the variance
present in these data, the likelihoods of these two mod-
els offer a different perspective on model selection. For the
design in Fig. 4a, c, NHKV and Gen. qKV show comparable
model probability. Conversely, for the other case in Fig. 4b,
d, the preference for Gen. qKV over NHKV is unequivo-
cal. These findings are also visually corroborated. Magnified
regions near the second bubble collapse, where the differ-
ences between the two models are most pronounced, are
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Fig. 2 BOoutput trajectories as a function of nBO trials (a) and the opti-
mal BO outputs (b) for EIG sample sizes NEIG = 200, 400, . . . , 1600.
The dot-dashed line in (a) indicates the onset of the BO process with
10 initial trials. The relative difference between the optimal design, d∗,

using NEIG samples and the design using 1600 samples, d�∞, is shown in
(b). The optimal EIG for the EIG sample size used later, NEIG = 1000,
is highlighted in (b)

Fig. 3 DA outputs over the total
En4D-var iteration number
NDA: ensembles for a G∞; b μ;
c α; and d RMSE of the bubble
dynamics curves (see examples
in Fig. 4). The shaded area in (a)
represents the 95% confidence
interval for the G∞
measurements. The solid curves
in (a–c) represent Gaussian
distributions approximated from
the 48 ensembles, with their
respective mean values marked
as stars. In (d), the error
between the mean of the
measurements and the
unobtainable truth, ‖〈YD〉 − Ỹ‖,
is shown for comparison

provided in Fig. 8. These model probabilities are next used
to update the prior distribution to estimate the optimal EIG
for the next design point. The processes shown in Figs. 2, 3
and 4 are then repeated.

Figure5 shows the results for the sequential BOED. As
the number of measurements increases, we observe a trend
of increased exploration of parameter space and highermodel
probability for Gen. qKV, leading to a decreasing EIG.

Conversely, the total EIG continues to rise due to inher-
ent measurement uncertainties. The initial EIG values for
both the optimal and randomly selected design parameters,
which follow a uniformdistribution, are notably high, reflect-
ing a meaningfully large discrepancy between our chosen
prior distribution and the actual underlying distribution. As
a result, experiments on any design yield substantial knowl-
edge gains, leading to a larger EIG. Accurate identification of
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Fig. 4 Posterior bubble
dynamics trajectories and their
marginal likelihoods: a, c
Rmax = 9.85 × 10−4m and
R∗∞ = 0.2887; b, d
Rmax = 3.87 × 10−4m and
R∗∞ = 0.15

Fig. 5 Sequential BOED
outputs over the design number
NDes: a EIG and total EIG; b
model probabilities; and c
relative error of the mean
material properties

thematerial properties for Gen. qKV can be seen fromFig. 5c
in terms of the relative error. Here, the distributions of mate-
rial properties are cumulatively updated to incorporate the
results from all the DA analyses up to the NDesth simulation.
Themeanmaterial properties converge across approximately
10 designs, coinciding with a reduction in their variances to
levels deemed negligible (see the posterior entropy shown
in Fig. 9b). The convergence of G∞ to the ground truth sug-
gests that the Gen. qKV model effectively reduces to the

standard qKV model with a constant quasistatic shear mod-
ulus. These findings indicate that the sequential approach
effectively characterizes the underlying qKV model despite
multiple sources of error. The optimal sequential BOED
demonstrates superior EIG, model probability, and relative
error performance compared to the random design. This
performance demonstrates that the proposed approach can
accurately and efficiently characterize the underlying soft
material from bubble dynamics.
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Fig. 6 Convergence study of different error sources

Finally, we examine the effects of different error sources
within the system, as shown in Fig. 6. The accuracy of the
stiff-straining parameter, α, improves as the variation of the
quasistatic shear modulus, G∞, decreases to the real exper-
imental error of 2%, see, e.g., [10]. At the same time, these
parameters collectively represent a material’s resistance to
shearing deformation under shearing stress (see 2).

Amore accurate determinationof the viscosity,μ, requires
smaller measurement errors in the bubble radius, R. This cor-
respondence can also be inferred from 2 due to the coupled
contributions of μ and R to the stress integral. For example,
the optimal design is conducted considering high measure-
ment noise in both R and G∞, and the outputs demonstrate
notable improvement compared to the random design. By
reducing the error in both sources, we anticipate accurately
identifying the twoparameterswith a relative error of approx-
imately 0.1%, as is the case for the random design.

5.2 NHKV for soft PA

Next, we consider NHKVas the underlyingmodel to approx-
imate the behavior of soft PA [11]. Consistent with the
previous case, we initialize the prior distributions of the
NHKV material properties as G = 12.00(635) kPa and
μ = 0.14 ± 0.073Pas, resulting in a 50% error against
the truth. For Gen. qKV, we assume that the quasistatic
shear modulus is measured with G∞ = 0.57 ± 0.06kPa
and the prior distributions are set as μ = 0.08 ± 0.05Pas,
α = 0.96 ± 0.48.

We repeat the process shown in Sect. 5.1 and show the
sequential BOED results for the synthetic soft PA in Fig. 7.
The overall trend is qualitatively similar to those presented in
Fig. 5. These 12 designs accurately characterize the underly-
ing NHKV model and its material properties. Although the
optimal designs are chosen bymaximizing information gains
instead ofminimizing errors inmaterial properties, they yield
improved results for μ and comparable outcomes for G rel-
ative to the random design. Collectively, Sects. 5.1 and 5.2
illustrate that the proposed method can accurately and effi-

ciently characterize the mechanical behaviors of different
soft materials.

6 Limitations of present work

The application of En4D-Var for data assimilation is com-
putationally efficient if the material properties, such as shear
modulus and viscosities, follow a multivariate normal dis-
tribution. Consequently, its performance deteriorates when
the soft materials under characterization do not adhere to
this assumption. Other Bayesian parameter inference meth-
ods, such as Markov chain Monte Carlo (MCMC) sampling,
can address this issue but often require many samples to
compute posterior estimates with acceptable accuracy. As
suggested by [84], a minimum sample size for an effective
MCMC process is 104, higher than the En4D-Var ensemble
size used in this work, NEn = 48. Therefore, balancing the
number ofmeasurements required for posterior sampling and
the constraints imposed on the distributions of the material
properties becomes necessary for analyzing real experimen-
tal data. Conducting a prior assessment of the test samples
could potentially aid in achieving this balance.

The proposed approach necessitates knowledge of the
underlying theoretical models as a prior for optimal design
and parameter inference. Specifically, in our context, this
information includes the constitutive models used within the
spherical bubble dynamics equations. While the modal prob-
ability calculation yields the marginal likelihoods for each
constitutive model under consideration, it does not provide
further insights beyond thesemodels. If all the availablemod-
els inadequately represent the experimental measurements,
data-driven modeling approaches, such as system identifica-
tion or operator inference methods, offer a viable strategy for
exploring alternative models.

7 Conclusions

This study presents a computational approach for the opti-
mal design of experiments to accelerate the discovery of
material properties. To create synthetic data that aligns with
real experiments, we used inertial microcavitation rheometry
(IMR) for accurate and efficient bubble dynamics simu-
lations. By incorporating appropriate noise to account for
model error andmeasurement noises, these simulations serve
as predictions of bubble dynamics trajectories under spe-
cific experimental conditions during the optimal design phase
and as synthetic measurements during the parameter infer-
ence phase. We formulated the optimization problem within
a Bayesian statistical framework to design experiments that
provide the most informative data about unknown material
properties. Bayesian optimization (BO) is selected as the
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Fig. 7 Sequential BOED
outputs over the design number
NDes: a EIG and total EIG; b
model probabilities p(M); and
c relative error of the mean
material properties

optimizer to maximize the expected information gain (EIG)
in the design space, effectively providing sample efficiency
in the global optimization of the noisy, high-computational-
cost EIG, despite the lack of gradient information. The
constitutive models and associated viscoelastic properties
are then determined from the measurements using a hybrid
ensemble-based 4D-Var method (En4D-Var). By iterating
these two processes sequentially, we demonstrated accurate
and efficient characterizations of two types of synthetic poly-
acrylamide (PA) gels. The larger error in each source of
synthetic data compared to real experimental measurements
evidences the robustness of the IMR-based design approach,
underscoring its potential applicability to actual experimen-
tal designs.

A Bayesian optimization (BO)

The core of Bayesian Optimization (BO) is to build a surro-
gate model of the target function using a Gaussian Process
(GP) regression and iteratively select points to evaluate based
on this model. The GP can model a rich distribution over
functions and depends entirely on the choice of the covari-
ance function. After testing different kernels, we chose the
Ard Matérn 5/2 kernel [41] with

KM52(d, d ′) = ψ0

(
1 +

√
5r2(d, d ′) + 3

2
r2(d, d ′)

)

exp
(
−

√
5r2(d, d ′)

)
, (A.1)

where r2(d, d ′) = ∑2
j=1(d j − d ′

j )
2/ψ j is the squared

distance between the points in parameter space, ψ0 is the
covariance amplitude, and ψ{1,2} are the length scales asso-
ciated with each design parameter. With the predictive mean
functionμy and variance function σ 2

y , the expected improve-
ment criterion is used for the acquisition function

EI(d; ξ) = (
μy − EIG(dbest) − ξ

)


(
μy − EIG(dbest) − ξ

σy

)

+σyϕ

(
μy − EIG(dbest) − ξ

σy

)
,

(A.2)

where ϕ(·) is the probability density function of the normal
distribution N (0, 1) and (·) is its cumulative distribution
function. In practice, an exploration-exploitation parameter
of ξ = 0.01 is used. This parameter favors high exploita-
tion while allowing for slightly more exploration compared
to the standard expected improvement (ξ = 0). This choice
aligns with the observation that the evaluation of the EIG at a
given design does not vary significantly when NEIG = 1000
samples are used for estimation. In the computation, we use
the MATLAB function fitrgp to train the GPR model. The
input arguments include the EIG evaluations and the ker-
nel and acquisition function described above. Based on the
available evaluations, the OptimizeHyperparameters
option minimizes the cross-validation loss for fitrgp
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by varying normalization-related hyperparameters, such as
length scales and variances, and decides whether to stan-
dardize the data. As a result, some of the presented examples
are standardized throughout the process if standardization
reduces the cross-validation error. All data are normalized.
The ease of implementing this model makes it an attrac-
tive choice for our framework. It enables efficient design
optimization while maintaining flexibility in hyperparame-
ter tuning.

B Ensemble-based four-dimensional varia-
tional method (En4D-Var)

The En4D-Var filter can be broken down into a forecast and
an analysis step. Given the initial NEn ensembles

Q̃0 = [ Q̃(1)
0 · · · Q̃

(NEn)

0 ], (B.1)

the states can be propagated in time using (6) and the cor-
responding ensemble bubble radii at time step k can be
represented as

Ỹ k = [R∗
k
(1) · · · R∗

k
(NEn) ]. (B.2)

For a given observed data set, YD, and a data assimilation
window size, Nt , the cost function of En4D-Var is

J (Q0) = 1

2Nt

Nt∑
k=1

∥∥∥YD
k − Y k(Q0)

∥∥∥2
Pk

+ 1

2

∥∥∥Q0 −
〈
Q̃0

〉∥∥∥2
C0

.

(B.3)

The norms for the input and output spaces are

‖Y k‖2Pk
≡ Y


k P−1
k Y k and ‖Q0‖2C0

≡ Q

0 C

−1
0 Q0,

(B.4)

where Pk is themeasurement noise covariancematrix at time
step k, and C0 = Q̃′

0 Q̃′

0 is the initial ensemble covariance

defined using the initial state perturbation matrix,

Q̃
′
0 = 1√

NEn − 1
[ Q̃(1)

0 −
〈
Q̃0

〉
· · · Q̃

(NEn)

0 −
〈
Q̃0

〉
],
(B.5)

where 〈·〉 is the ensemble average. The optimization for the
cost function in (B.3) is carried out using the form Q0 =
Q̃0 + Q̃

′
0 · w to restrict the solution to the subspace spanned

by the scaled perturbationmatrix around the initial ensembles
using the correction coefficient w. This process is equivalent
to finding the minimizer

wopt = argmin
w

Jw(w) (B.6)

for the cost function

Jw(w) = 1

2Nt

Nt∑
k=1

∥∥∥YD
k −

〈
Ỹ k

〉
−

〈
Ỹ

′
k · w

〉∥∥∥2
Pk

+ 1

2
w
w,

(B.7)

where the scaled output perturbation matrix takes the form
of

Ỹ ′
k = 1√

NEn − 1
[Ỹ (1)

k −
〈
Ỹ k

〉
· · · Ỹ (NEn)

k −
〈
Ỹ k

〉
]. (B.8)

In practice, we follow [53] to seek the optimal correction
coefficient wopt iteratively using a Gauss–Newton method,

wi+1 = wi − H−1
i ∇ Ji (wi ), (B.9)

where i < Niter is the iteration index, and H and ∇ J repre-
sent approximations of the Hessian and gradient of J . They
can be found with

H i = (NEn − 1)I + 1

Nt

Nt∑
k=1

Ỹ ′
k


P−1
k Ỹ ′

k, (B.10)

∇ J i = − 1

Nt

Nt∑
k=1

Ỹ ′
k


P−1
k

(
YD
k −

〈
Ỹ k

〉)
+ (NEn − 1)wi .

(B.11)

By combining the En4D-Var method with the subsequent
marginal likelihood calculation,we establish a framework for
model inference based on the data. Figure8 shows the zoom-
in regions of Fig. 4 near the second bubble collapse,where the
differences between the two models are most pronounced. In
Fig. 8a, the Gen. qKVmodel performs slightly better than the
NHKV model, as reflected in their similar model probabili-
ties. In Fig. 8b, the NHKV model fails to capture the second
collapse, whereas some instances of the Gen. qKV model
do. This discrepancy, reflected in their model probabilities,
results in more confidence in the Gen. qKV model.

The trajectory of the design parameter used to explore the
stiff PA in Sect. 5.1 over the design number NDes is shown
in Fig. 9a. The optimal design tends to explore regions with
a larger maximum bubble radius but a smaller equilibrium
radius, resulting in a larger stretch ratio. The variance of the
multivariate variable, �, is shown in Fig. 9b in terms of the
posterior entropy, defined as log |�|/2 + 3(1 + log 2π)/2.
A reduction in the variances to levels considered negligible
can be observed.
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Fig. 8 Magnified regions of
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p(Gen qKV) = 0.999

Fig. 9 Sequential BOED
outputs for exploring the stiff
PA in Sect. 5.1 over the design
number NDes: a trajectory of the
design parameter; b posterior
entropy
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