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Fluid-fluid interfacial instability and subsequent fluid mixing are ubiquitous in nature
and engineering. The hydrodynamic instability of fluid interfaces has long centered on the
pressure gradient-driven long-wavelength Rayleigh-Taylor instability and the resonance-
induced short-wavelength Faraday instability. However, neither instability alone can
explain the dynamics when both mechanisms are present. We identify a previously un-
seen multi-modal instability emerging from their coexistence. When the denser fluid is
polydimethylsiloxane, the mixed region at a high density contrast (Atwood number =
0.9) spans a vibration amplitude range approximately twice the gravitational acceleration.
Using Floquet stability analysis, we show how vibrations govern transitions between the
RT and Faraday instabilities, leading to contention between these instabilities rather than
resonant enhancement. The initial transient growth is represented by the exponential modal
growth of the most unstable Floquet exponent, along with its accompanying periodic
behavior. Direct numerical simulations validate these findings and track interface breakup
into the multiscale and nonlinear regimes. Specifically, we show that growing RT modes
nonlinearly suppresses Faraday responses even when the initial growth rate of the Faraday
instability is 3.63 times that of RT, so a bidirectional competition hinders their sustained
coexistence.

DOI: 10.1103/r9b3-psg4

I. INTRODUCTION

The interface separating phases in multiphase fluid systems is often subjected to deformation
due to internal density differences or external vibrations. These deformations manifest in various
forms, including liquid dripping [1–3], bubble injection [4–6], tip streaming [3,7,8], and surface
waves [9]. Such phenomena are ubiquitous, occurring in natural processes, such as mantle plumes
and cryospheric vibrations, as well as in engineering applications like atomization and inertial
confinement fusion [10,11]. The unstable growth of these interface deformations eventually leads
to interface breakup and fluid mixing. Linear stability analysis predicts two primary hydrody-
namic instability mechanisms: the pressure gradient-driven fluid mixing mechanism, triggering the
Rayleigh-Taylor (RT) instability [12,13], and the resonance mechanism, triggering a Faraday insta-
bility [14]. Over a century of research has focused on studying these fundamental hydrodynamic
instabilities separately, as each is central to a vast range of applications.

The analysis of RT instability originated with investigations into the growth of small-amplitude
interfacial waves between two inviscid fluids of differing densities [12,13]. Viscous effects in the
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stable configuration were first considered by Harrison [15], and later, Bellman and Pennington
[16] examined the combined influence of viscosity and surface tension on the unstable regime.
A comprehensive and widely acclaimed treatise on RT instability can be found in Chandrasekhar
[17]. Building on this foundation, Plesset and Whipple [18] introduced simplified physical models
applicable in the asymptotic limits of large and small contrasts in density and viscosity. For detailed
reviews of RT instability theory and its developments, readers are referred to Sharp [19] and Kull
[20]. More recently, Piriz et al. [21] derived a simple yet highly accurate analytical expression for
RT instability in nonideal fluids.

When vibration amplitude exceeds a critical threshold, the flat interface destabilizes through
resonant Faraday instability, generating standing surface waves. This phenomenon has garnered
significant attention and extensive study; see an early review by Miles and Henderson [9]. Benjamin
and Ursell [22] showed that the stability of the free surface of an ideal fluid can be analyzed using
a system of Mathieu equations. Although widely adopted, this idealized model is not sufficiently
realistic to yield results that match experimental observations [23]. This discrepancy shows the role
of viscosity in interfacial stability. Using Floquet analysis, Kumar and Tuckerman [24] showed
that even when linear damping is included, the Mathieu equation fails to represent the dynamics
of viscous fluids. They demonstrated that viscosous effects modify the wavelength selection and
distort the tongue-shaped stability regions. Kumar [25] extended this analysis to shallow fluids
with free surfaces, predicting a series of bicritical points for subharmonic and harmonic responses.
Despite its limitations in representing viscous effects, Wright et al. [26] numerically demonstrated
that the modified Mathieu equation accurately predicts the temporal growth of Faraday oscillations
in inviscid fluids. Beyond the wave forms observed in the above two-dimensional analyses and
experiments, Panda et al. [27] recently demonstrated numerically that Faraday instability can give
rise to more complex patterns when the domain is extended to three dimensions.

Despite their well-established nature and pervasive observations, a comprehensive understanding
of the interface behavior when the long-wavelength RT and short-wavelength Faraday instabilities
coexist is lacking. This knowledge gap is important because vibrations and density contrast occur si-
multaneously in many realistic situations, including vibrated multiphase systems, industrial mixing
processes, and fluids in spacecraft propellant tanks. For example, vibrated levitating liquids repre-
sent a compelling case in which these instabilities interact in a nontrivial way [28]. Faraday waves
inherently link to RT instability when the oscillation amplitude exceeds gravitational acceleration
[26,29]. In such regimes, the interface undergoes the Faraday instability throughout each oscillation
cycle, while experiencing RT mechanisms during the upward acceleration phase. Notably, Dinesh
et al. [30] experimentally demonstrated the emergence of an electrostatic resonance resembling an
RT-like instability, coexisting with the standard Faraday instability. A fundamental understanding
of these coupled mechanisms is essential for developing effective strategies to control interfacial
dynamics in such complex systems. Wolf [31,32] showed via experiment that unstable viscous RT
waves can be stabilized without generating standing Faraday waves by oscillating the container
at specific amplitudes and frequencies. Later studies supported this conclusion through theoretical
arguments, and a partial theory was developed [33–37]. However, the coexistence of unstable RT
and Faraday modes, which can meaningfully influence the interface dynamics, has been largely
overlooked. The complex interactions and physical mechanisms emerging from this coexistence
remain mysterious. This work addresses this gap and provides a comprehensive view of interfacial
dynamics under combined density contrast and vibrations, while also accounting for viscosity and
surface tension effects.

We focus on two-dimensional analyses and simulations to gain clearer insight into the underlying
mechanisms. Figure 1 shows a schematic of the two-fluid interface, where both long-wavelength
RT and short-wavelength Faraday waves coexist. In Sec. II, we perform a linear Floquet stability
analysis to characterize the temporal evolution of the interface in the linear regime. Assuming
horizontal homogeneity, we decompose the interface into individual wave numbers, enabling sep-
arate investigation of both long-wavelength RT and short-wavelength Faraday modes. Section III
describes the numerical approach for two-dimensional, scale-resolved simulations of the two-phase
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FIG. 1. The two-fluid interface with long-wavelength RT and short-wavelength Faraday instabilities.

fluid system. These simulations validate the linear theory and represent the system evolution into
multiscale and nonlinear regimes, as presented in Sec. IV. We also explore the oscillation-frequency-
amplitude phase space to characterize the transition of the dominant instability. Section V discusses
the limitations of the study and summarizes the findings on the coexistence and competition between
RT and Faraday instabilities.

II. THEORETICAL BACKGROUND

A. Governing equations

Consider the interface between two immiscible and incompressible fluids: a denser fluid and
a lighter fluid, denoted by subscripts (·)d and (·)l , respectively. The fluids are confined between
two infinite horizontal plates separated by a distance of 2h and subject to constant gravitational
acceleration and an oscillatory vertical acceleration

g̃(t ) = g∗g + a cos(ωt + ϕ0), (1)

where a is the oscillatory amplitude, ω is the corresponding frequency, and ϕ0 is the initial phase.
Positive gravity g∗ = 1 applies when the denser fluid is at the domain bottom, and negative gravity
g∗ = −1 applies when the denser fluid is on top. Figure 1 shows the two-fluid interface subjected
to a harmonic vibration. Within each fluid layer j, the motion of the fluid is governed by the
incompressible Navier-Stokes equations,

ρ j[∂t + (u j · ∇)]u j = −∇p j − ρ j g̃ez + μ j∇2u j, ∇ · u j = 0. (2)

To systematically analyze the interfacial dynamics, we nondimensionalize the governing equa-
tions using h as the characteristic length and g as the reference gravitational acceleration. Density
ρ, viscosity μ, and surface tension σ are scaled using appropriate reference values. The resulting
dimensionless variables, denoted by (·)∗, are summarized in Table I. Equation (2) can therefore be

TABLE I. Dimensionless quantities.

Dimensionless quantity Quantity name

tc = √
h/g Gravitational time

At = (ρd − ρl )/(ρd + ρl ) Atwood number
η = μl/μd Viscosity ratio
C = νd/

√
gh3 Viscous-to-gravitational force ratio

Bd = ρd gh2/σd Bond number
a∗ = a/g Acceleration
ζ ∗ = ζ/h Interface displacement
k∗ = kh Wave number
t∗ = t/tc Time
γ ∗ = γ tc Growth rate
ω∗ = ωtc Oscillatory frequency
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written as

[∂t∗ + (u∗
j · ∇∗)]u∗

j = −∇∗ p∗
j − g̃∗ez + Cj�

∗u∗
j , ∇∗ · u∗

j = 0, (3)

where Cd = C and Cl = (1 − At)/(η(1 + At)). We can decompose the flow state around the
equilibrium-state solution of the Navier-Stokes Eqs. (3) as

u∗
j = U∗

j + u∗
j
′
, p∗

j = P∗
j + p∗

j
′
, (4)

where (U∗
j , P∗

j ) = (0,−g̃∗ez ) and (·)′ denotes the small fluctuating components. The linearized
governing equations for the fluctuations are

∂t∗u∗
j
′ = −∇∗ p∗

j
′ + Cj�

∗u∗
j
′
, ∇∗ · u∗

j
′ = 0. (5)

Applying the operator ez · ∇∗ × ∇∗× to Eq. (5) eliminates the horizontal velocity components,
yielding

(∂t∗ − Cj�
∗)�∗w∗

j
′ = 0. (6)

At the interface z∗ = ζ ∗, continuity of the vertical velocity perturbation, w∗
j
′, and the tangential

stress yields

δ[w∗
j
′
, ∂z∗ (w∗

j
′), Cj (�

∗ − 2∂z∗z∗ )w∗
j
′] = 0, (7)

where δ represents the jump across the interface. The linearized kinematic boundary condition gives

∂t∗ζ ∗ = w∗|z∗=0. (8)

The jump condition for pressure across the interface,

δp∗ = 2(Cl − Cd )(∂z∗w∗)|z∗=0 − 2At

1 + At
g̃∗ζ ∗ + 1

Bd
(�∗ − ∂z∗z∗ )ζ ∗, (9)

explicitly represents the effect of vibration. Together, Eqs. (6) to (9) govern the linearized interfacial
dynamics. We further assume that the interface profile ζ ∗ remains well-defined and single-valued
during the vibration. Due to the horizontal homogeneity, we use a Fourier transform in the horizontal
direction

[w∗
j
′(x∗, z∗, t∗), ζ ∗(x∗, t∗)] = 1

2π

∫ ∞

−∞
[ŵ∗

j (k∗, z∗, t∗), ζ̂ ∗(k∗, t∗)]eik∗x∗
dk∗ (10)

to expand the velocity and interface displacement in the above governing equations. Equation (10)
decomposes wave forms into different length scales, enabling separate analysis of RT and Faraday
instabilities. The dynamics introduced by the parametric source are subsequently analyzed using a
Floquet analysis, as described next.

B. Linear Floquet stability analysis

The time-periodic variation in gravity is suspected to be the driving source of instability, thereby
motivating a Floquet analysis [38]. Consequently, the temporal evolution of the vertical interface
displacement ζ ∗(t∗) is expected to exhibit both exponential growth or decay, modeled by eγ ∗t∗

,
and superimposed oscillatory fluctuations, captured by the periodic term

∑
n ζ̂ ∗

n einω∗t∗
. At each

horizontal wave number, this response can be decomposed into modal and periodic parts, yielding

[ŵ∗
j (k∗, z∗, t∗), ζ̂ ∗(k∗, t∗)] = eγ ∗t∗︸︷︷︸

Modal

∞∑
n=−∞

[ŵ∗
j,n(k∗, z∗), ζ̂ ∗

n (k∗)]einω∗(t∗+t∗
0 )

︸ ︷︷ ︸
Periodic components

, (11)

where γ ∗ is the Floquet exponent, t∗
0 is the time shift associated with the initial phase ϕ0, and n

is the intger index of the harmonics [24,25]. A positive real Floquet exponent indicates instability,
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driving the system toward interface breakup. Substituting Eqs. (10) and (11) into Eq. (6) gives[
γ ∗

n − CjD
(k)
zz

]
D(k)

zz ŵ∗
n, j = 0, (12)

where γ ∗
n ≡ γ ∗ + inω∗ is the total Floquet exponent for the nth harmonics, and D(k)

zz ≡ ∂z∗z∗ − k∗2.
The general solution of this dispersion relation is

ŵ∗
n, j = an, je

k∗z∗ + bn, je
−k∗z∗ + cn, je

k∗qn, j z∗ + dn, je
−k∗qn, j z∗

, (13)

where qn, j ≡ √
1 + γ ∗

n /(Cjk∗). No-slip boundary conditions at the two plates yield

ŵ∗
n,d = ∂z∗ŵ∗

n,d = 0 at z∗ = −1, (14)

ŵ∗
n,l = ∂z∗ŵ∗

n,l = 0 at z∗ = 1. (15)

The jump conditions at the interface in Eqs. (7) and (8) can be written as

[1, ∂z∗ , η(∂z∗z∗ + k∗2)]ŵ∗
n,l = [1, ∂z∗ , (∂z∗z∗ + k∗2)]ŵ∗

n,d , (16)

γ ∗
n ζ̂ ∗

n = ŵ∗
n |z∗=0. (17)

Substituting the general solution in Eq. (13) into the above 8-equation boundary condition, we find

Qn(an,d , bn,d , cn,d , dn,d , an,l , bn,l , cn,l , dn,l )
T = (γ ∗

n ζ̂ ∗
n , 0, 0, 0, 0, 0, 0, 0)T. (18)

The full expression of the matrix Qn is given in Eq. (A8) in the Appendix. When the depth h → ∞,
the vanishing velocity gives bn,d = dn,d = an,l = cn,l = 0.

The jump condition in Eq. (9) directly relates the displacements at different orders of harmonics
ζ̂ ∗

n . The resulting linear system can be expressed as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...

· · · A−1 0 0 · · ·
· · · 0 A0 0 · · ·
· · · 0 0 A1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

−a∗

⎛
⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...

· · · 0 1 0 · · ·
· · · 1 0 1 · · ·
· · · 0 1 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

ζ̂ ∗
−1

ζ̂ ∗
0

ζ̂ ∗
1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ζ̂

∗

= 0, where (19)

An(γ ∗; k∗) ≡ 2k∗(an,d − bn,d + cn,d q∗
n,d − dn,d q∗

n,d )(γ ∗
n /(Ck∗2) + 3C(1 − η)(1 + At)/(2At))

− 2C(1 − η)k∗(1 + At)/(2At)
(
an,d − bn,d + cn,d q∗3

n,d − dn,d q∗3

n,d

)
+ 2(g∗ + k∗2(1 + At)/(2AtBd)). (20)

Equations (19) and (20) provide a comprehensive analysis of interfacial instabilities, accounting
for viscosity effects, surface tension, internal density differences, and external vibrations. For each
wave number, the solution of the optimization problem

γ ∗
U = argmaxdet A(γ ∗; k∗ )−a∗B=0Re{γ ∗}. (21)

yields the corresponding most unstable Floquet exponent. The periodic components at different
harmonics ζ̂

∗
can be then found as the null space of (A − a∗B). Equation (21) shows a general-

ized analysis of the hydrodynamic instability in fluid mixing, covering a range of configuration
parameters, including viscosity, surface tension, vibration, and density differences, exhibiting rich
mechanical differences. In the static limit (a∗ → 0), Eq. (21) becomes

γ ∗
U = argmaxA0(γ ∗; k∗ )=0Re{γ ∗}, (22)
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as only n = 0 survives the simplification of Eq. (11). This form recovers the classical RT dispersion
relation [17]. The critical acceleration a∗

c for neutral stability is obtained by constraining the
displacement in Eq. (21) to exhibit pure sinusoidal harmonic (H), γ ∗

U = 0, or subharmonic (S),
γ ∗

U = iω∗/2, responses, which recovers the generalized eigenvalue problem

A(γ ∗
U = 0 or iω∗/2; k∗)ζ̂

∗ = a∗
c Bζ̂

∗
(23)

for the Faraday instability [24,25]. Beyond identifying the stability boundary, Eq. (11) enables the
prediction of transient wave dynamics at a given wave number k∗ within the unstable regime.
In practice, Eq. (19) is truncated at n = 10, resulting in a 22 × 22 linear problem. Including
higher-order harmonics does not visibly affect the results but may introduce numerical instabilities.
Together, these analyses enable the dissection of the mechanics as the system transitions toward
nonlinear interface breakup. While standard Floquet exponents, often obtained through the eigende-
composition of the monodromy matrix, are not unique, they collectively describe nonmodal growth.
Using numerical simulations, we demonstrate that the modal growth of the most unstable Floquet
exponent γ ∗

U , combined with the periodic components, can accurately predict the initial transient
dynamics.

III. NUMERICAL METHOD

We perform high-fidelity 2D simulations using MFC, a GPU-accelerated compressible solver for
multi-component, multiphase flows [39]. MFC is selected for its computational efficiency, state-of-
the-art GPU acceleration [40,41], and ability to handle numerically challenging problems, including
multi-component high-density ratio flows with interfacial tension effects that we focus on here.
For example, the present method is validated against analytical solutions for Rayleigh-Taylor and
Faraday instabilities, showing deviations of less than 1% from exact (see Sec. IV).

Here, we use the 6-equation diffuse interface model [42] to describe the multiphase system,
which we augmented with a surface tension formulation [43]. The governing equations have the
form

∂q
∂t

+ ∇ · F(q) + h(q)∇ · u = s(q), (24)

for which

q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α1ρ1

α2ρ2

ρu

α1ρ1e1

α2ρ2e2

ρE + ε0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1u

α1ρ1u

α2ρ2u

ρuu + pI − T + �

α1ρ1e1u

α2ρ1e2u

(ρE + p + ε0)u − T · u + � · u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α1

0

0

0

α1 p1

α2 p2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μδp

0

0

−ρg̃

−μpIδp − α1T 1 : ∇u1

μpIδp − α2T 2 : ∇u1

−ρ(u · g̃)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)
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For each fluid j, α j is the volume fraction, e j is the internal energy, and

T j ≡ μ j
[∇u + (∇u)T − 2

3 (∇ · u)I
]

(26)

is the viscous stress tensor. The equations are closed by the usual set of mixture rules∑
j

α j = 1, ρ =
∑

j

ρ jα j, μ =
∑

j

μ jα j, and T =
∑

j

T jα j . (27)

The total mixture energy E is

E =
∑

j

Yje j + ||u||2/2, (28)

where Yj = α jρ j/ρ are the mass fractions of each phase. Surface tension and body forces are applied
only to the total mixture energy. The capillary stress tensor � is given by

� = −σ

(
‖∇α1‖I − ∇α1 ⊗ ∇α1

‖∇α1‖
)

(29)

and ε0 = σ‖∇α‖ is the capillary energy. The system is solved via a high-order accurate finite-
volume method and Runge-Kutta temporal discretization. The numerical method closely follows
that of Coralic and Colonius [44] and is described in detail in Bryngelson et al. [39] and Wilfong
et al. [41]. Closure is provided by the stiffened gas equation of state

e j = p j + γ jπ∞, j

(γ j − 1)ρ j
. (30)

The fluid parameters for ratio of specific heats γ j and liquid stiffness π∞, j , enable faithful modeling
of liquids and gasses [45].

Numerical simulations. The 2D computational domain spans four wavelengths of interest in
width, with each fluid layer having a depth of h = 0.013 m. A uniform Cartesian mesh resolves
the shortest wavelength with 192 grid cells, which is sufficient to accurately capture the interface
between the two fluids. This resolution has been validated through a grid convergence study
conducted with up to 288 grid cells. Periodic and no-slip boundary conditions are applied at the
horizontal and vertical boundaries, respectively. The interface is initially perturbed by a height
that is 1% of the wavelength, and hydrodynamic equilibrium is achieved at the interface with
a pressure of 100 kPa. For demonstration purposes, we consider polydimethylsiloxane (PDMS)
as the more dense fluid, which has been used in experimental studies of vibrated fluids [46].
PDMS is characterized as a Newtonian fluid with density ρd = 950 kg/ m3 , kinematic viscosity
of νd = 2 × 10−5 m2 s−1, and surface tension coefficient of σd = 2.06 × 10−2 Nm−1. The stiffened
gas equation of state parameters (γ , π∞) = (3.49, 2.78 × 108) for PDMS are selected to match the
speed of sound 1011 m/s [47] and the internal energy of water at standard temperature and pressure.
The gravitational acceleration is g = 9.81 m/s2, yielding the dimensionless quantities C = 0.0043
and Bd = 76.456, which quantify the ratios of viscous and surface tension forces to gravitational
forces, respectively. The properties of the lighter fluid are determined by the density and viscosity
ratios, At and η. Table II summarizes the configurations studied. The equation of state parameters
for the lighter fluid are (γ , π∞) = (1.4, 0) for the At = 1 case and (γ , π∞) = (3.48, 1.46 × 107)
for the At = 0.9 case. A startup period lasting a quarter of an oscillation cycle initiates fluid motion,
ensuring consistency with the nonzero velocity fields predicted by linear theory. Phase interfaces
are identified by isolating the α = 0.5 isosurface of the volume fraction field.

IV. RESULTS

We verify the linear theory predictions for the RT-stable case, where g∗ = 1. In this scenario, the
interface is modeled as an ideal free surface, with the lighter fluid assumed to have zero density
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TABLE II. Configurations studied.

Cases h [mm] a∗ g∗ ω∗ (At, η) k∗ γ ∗
U (S/H)

Figure 2(b) 26.87 10 1 24.6 (1,0) 31.4 3.77 (S)
Figure 2(c) 21.81 15 1 29.6 (1,0) 31.4 4.47 (S)
Figure 2(d) 16.75 30 1 39.0 (1,0) 31.4 6.80 (S)
Figure 2(e) 12.95 30 1 45.7 (1,0) 31.4 3.61 (S)
Figure 5(a) 13.00 16 −1 33.9 (0.9,0.1) 2.89 1.21 (H)

13.00 16 −1 33.9 (0.9,0.1) 29.1 1.21 (S)
Figure 5(b) 13.00 18 −1 27.4 (0.9,0.1) 2.04 0.96 (H)

13.00 18 −1 27.4 (0.9,0.1) 24.5 3.45 (S)

and viscosity. Consequently, only Faraday-type instabilities can be triggered via vertical vibration.
Figure 2(a) shows the growth rates for four oscillation amplitude and frequency combinations, each
with a positive maximum growth rate at wave number k∗/2π = 5. This behavior indicates the onset
of Faraday instability, leading to an unstable interface. For all oscillation frequencies considered, the
boundary layer thickness, δ ≡ √

2νd/ω, is sufficiently smaller than the fluid depth (δ/h � 0.019)
and so the onset of the Faraday instability is subharmonic [25]. The temporal evolution of the
resulting Faraday waves over three oscillation periods is shown in Figs. 2(b)–2(e). Initial transient
dynamics of the Faraday waves are faithfully represented by the exponential modal growth of
the most unstable Floquet exponent and its associated periodic behavior, with less than 1% error
compared to numerical simulations. This agreement suggests that the nonmodal growth of Faraday
waves is effectively represented. These Faraday waves grow subharmonically and eventually lead
to interface breakup.

We focus on the case where both the RT and Faraday instabilities coexist, specifically under a
gravitational configuration directing gravity from the denser fluid toward the lighter one (g∗ = −1).
Figure 3 shows the growth rates of the displacement of the interface for various combinations of
parameters. The lighter fluid properties are chosen to approximate three types of interfaces: in-
viscid liquid-liquid (At = 0.3, η = 0.1), liquid-liquid (At = 0.3, η = 1), and gas-liquid (At = 0.9,

0 4 5 8 12
−12

−8

−4

0

4

8

k*/2π

R
e{

γ
∗ U
}

(a) (b)
(c)
(d)
(e)

−10

0

10
a∗ = 10
ω∗ = 24.6

R
e{

ζ̂
∗ (

k
∗ )
} (b)Fourier Comp. (simulation)

Total growth (theory)
Modal growth (theory)

a∗ = 15
ω∗ = 29.6

(c)

0 1 2 3

−10

0

10
a∗ = 30
ω∗ = 39.

t*/T *

R
e{

ζ̂
∗ (

k
∗ )
} (d)

0 1 2 3

a∗ = 30
ω∗ = 45.7

t*/T *

(e)

Parameters are provided in table II
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(b)–(e) Temporal evolution of the most unstable waves, with a magnified view showing the first period.

093904-8



COMPETING MECHANISMS AT VIBRATED INTERFACES …

−5

0

5

trajectories

R
e{

γ
* U
}

(a)

ω∗/2π = 1.82

(b)

ω∗/2π = 3.64

a ∗ = 30

a ∗
= 0

Decrease
of RT

Increase
of Faraday

(c)

ω∗/2π = 5.46

−5

0

5

R
e{

γ
* U
}

(d) (e) (f)

RT peak

Faraday peak

0 2 4 6 8
−10

−5

0

5

k*/2π

R
e{

γ
* U
}

(g)

0 2 4 6 8
k*/2π

(h)

0 2 4 6 8
k*/2π

(i)

A
t

=
0
.3

,
η

=
0
.1

A
t

=
0
.3

,
η

=
1

A
t

=
0
.9

,
η

=
0
.1

FIG. 3. Interface displacement growth rate for g∗ = −1 under various parameter combinations, with arrows
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η = 0.1). A classical RT instability manifests as a low-wave-number peak in the zero-vibration
case a∗ = 0. For larger oscillation amplitudes, the amplitude of the positive peak diminishes
toward zero and its position shifts toward the coordinate origin. This suppression does not lead
to a complete stabilization of the RT instability in infinite domains, as the RT growth rate γ ∗

U
remains positive, albeit reduced, under vibration. In contrast, complete stabilization can be achieved
in a finite horizontal domain, where the truncation of long-wavelength RT modes with k∗ → 0
effectively eliminates their growth. This behavior demonstrates the theoretical principle of dynamic
stabilization of RT waves under vibration within a confined container [31,32]. Given its continuous
evolution with increasing vibration, we refer to the instability mechanism of the low-wave-number
peak as RT-type. The Floquet exponent associated with the RT peak is purely real and can thus be
generalized to the cases of harmonic response. The Faraday instability emerges as the vibration
amplitude increases, marked by a distinct peak at higher wave numbers that shifts downward.
The increasing prominence of the Faraday peak does not resonate with the RT peak. Instead, the
RT peak is suppressed and pushed towards the zero-wave-number limit, further highlighting the
competitive interplay between these two phenomena. While an increase in the viscosity ratio, η,
has little effect on the growth rate profiles, increasing the density difference, At, induces local
peaks at higher harmonics. Unstable higher-order harmonics occur at the lowest oscillation fre-
quency (ω∗/2π = 1.82) in Figs. 3(d) and 3(g), complementing the dominant Faraday subharmonic
mode. As expected, increasing the oscillation amplitude will eventually cause the Faraday peak
to surpass the RT peak. This transition between the two fundamental hydrodynamic instabilities
leads to a mixed region where both instabilities coexist, potentially altering the dynamics of the
interface.

To have a comprehensive understanding of the multi-modal instability region and the associated
transition mechanisms, Fig. 4 shows the dominant growth rate within the oscillating frequency-
amplitude phase space for two different density ratios. For both cases, the transition of the leading
instability mechanism from RT to Faraday can be observed in three stages. At low oscillation

093904-9



TIANYI CHU et al.

transition

5(a)

5(b)

Fa
rad

ay
do

mina
nt

Fa
rad

ay
un

sta
ble

RT
do

mina
nt

&
Fa

rad
ay

sta
ble

2 4.5 7
0

10

20

ω*/2π

a
∗

(a) At = 0.9, η = 0.1

Faraday instability threshold RT-Faraday transition threshold

0

1.5

3

R
e{

γ
∗ U
}transition

2 4.5 7
ω*/2π

(b) At = 0.3, η = 0.1

FIG. 4. Dominant growth rate across the oscillating frequency-amplitude phase space: (a) (At, η) =
(0.9, 0.1); (b) (At, η) = (0.3, 0.1). The margins for the Faraday instability and the RT-Faraday transition are
highlighted.

amplitudes, the RT instability is the dominant phenomenon. The Faraday instability approaches
its unstable boundary for larger oscillation amplitudes, yet the RT mechanism is dominant. Finally,
at sufficiently high oscillation amplitudes, the growth rate of the Faraday instability surpasses that of
the RT instability. For a given oscillation frequency, the thresholds of these two stages differ by about
2g∗ for At = 0.9. When the density difference between the two fluids is reduced (At = 0.3), the RT
instability dominates most of the phase space under consideration, albeit with a reduced growth
rate. The onset of Faraday instability requires higher oscillation amplitudes at the same oscillation
frequency. The threshold separating RT-dominated and Faraday-dominated regimes decreases to
approximately 0.5g∗. These trends are consistent with what one expects; both instabilities weaken
in the limit of vanishing density contrast. In the following analysis, we focus on the case of At = 0.9,
where both instabilities are more strongly amplified compared to cases with lower density contrast.

To quantitatively compare theoretical predictions and numerical simulations, we perturb the
initial interface with three profiles: single-mode RT and Faraday sine waves and multiscale Perlin
noise perturbations [48]. The temporal dynamics of the normalized RT and Faraday modes are
shown in Figs. 5(a) and 5(b), corresponding to the two cases marked in Fig. 4(a). While classical
linear stability analysis of the static RT problem predicts purely exponential modal growth, vibra-
tions induce an oscillatory pattern around this baseline growth. Owing to its subharmonic nature,
the Faraday displacement becomes negative at t∗ = T ∗. The interface rebounds to a positive peak
that either intersects the RT displacement [panel (a)] or exceeds it [panel (b)] at t∗ = 2T ∗, where
T ∗ ≡ 2π/ω∗. For perturbations with a single sine wave, the modal growth of the most unstable
Floquet exponent, eγ ∗

U t∗
, exhibits favorable agreement with the Fourier components obtained from

simulations at integer multiples of the oscillation period for both instabilities. This alignment
confirms that the interface growth follows Floquet theory. By incorporating the modal growth
with the additional periodic terms, the total growth defined in Eq. (11) accurately predicts the
interfacial dynamics during the first oscillation period. Beyond this period, the theory remains in
qualitative agreement with simulations, although minor deviations arise due to nonlinear effects.
Simulations initialized with Perlin noise show suppressed growth rates and reduced amplitudes
of Faraday waves compared to theoretical predictions. The broadband initial wave number spec-
trum induces a harmoniclike response in the Faraday waves when their growth rate matches that
of the RT instability. Without competing wavelengths, these waves would exhibit subharmonic
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Floquet-type growth and ultimately induce interface breakup, suggesting that the observed suppres-
sion is primarily attributable to nonlinear damping effects. When the Faraday growth rate exceeds
that of RT, the theory remains qualitatively predictive of the system’s dynamics, despite multiscale
waves. In contrast, the growth of RT waves is generally unaffected by the presence of multiscale
wave components.

To illustrate transient interface dynamics across wave numbers in a realistic context, Fig. 6
presents the wave number-time diagram for the Perlin noise case shown in Fig. 5(b). This case
exemplifies the nonlinear damping of Faraday waves despite a dominant linear growth rate. The
coexistence of RT and Faraday waves is observed within the given time window. Wave numbers near
the Faraday peak exhibit periodic phase changes due to their dominance of the subharmonic nature,
whereas those near the RT peak display steady growth. Initially (t � 2.5T ∗), the interface profile
is dominated by Faraday waves due to their higher initial growth rate. Long-wavelength RT waves
amplify and dominate as time progresses, though residual small-scale Faraday oscillations persist.
This transition implies that the steadily growing RT components nonlinearly dampen the oscillatory
subharmonic Faraday responses, despite the inherent instability of these latter responses. The
resulting interface profiles, shown later in Fig. 7, provide a direct visualization of the competition
between long-wavelength RT waves and short-wavelength Faraday waves. Figures 5(a) and 5(b)
show that the Faraday waves would otherwise grow unimpeded toward interface breakup without
RT competition. The dominance of RT waves suppresses this pathway, redirecting the system

Faraday

RT

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

t∗/T ∗

k
∗ /

2π

−1.5

0

1.5

R
e{

ζ̂
∗ (

k
∗ )
}

FIG. 6. The wave number-time diagram for the Perlin noise case in Fig. 5(b).
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toward RT-driven dynamics. Together, these results demonstrate the nonlinear transient dynamics
that govern fluid interfaces under the combined effects of density and vibration.

To better understand the nonlinear damping of Faraday waves that cannot be represented via
linear theory, we examine the evolution of the entire flow field, rather than the interface alone.
Figure 7 shows the vertical momentum field ρ∗w∗, a conservative quantity, at various time instants.
A reference case is also considered for direct comparison, in which a linear superposition of Faraday
and RT modes with equal amplitude perturbs the initial interface. The velocity fields exhibit wave
number patterns consistent with those observed at the interface. Faraday-type wave packets remain
localized near the interface, while RT-type wave packets penetrate deeper, occupying the entire
lower half of the domain. These spatial structures reflect their underlying physical mechanisms: the
former arises from interfacial resonance, while buoyancy-induced pressure gradients drive the latter.
Faraday waves are readily developed in the absence of competing length scales. Their nonlinear
damping does not require broadband perturbations, such as Perlin noise. Including a single addi-
tional RT mode is sufficient to suppress the Faraday response. As discussed in the context of Fig. 3,
increasing the vibration amplitude to amplify the Faraday instability will consistently suppress the
RT instability toward the zero-wave-number limit and reduce its growth rate. Numerical simulations
further reveal that the residual, weakened RT dynamics concurrently attenuate the Faraday response
through a nonlinear damping mechanism. These results demonstrate a bidirectional competitive
interaction between the two fundamental instabilities, each modulating the other through linear and
nonlinear processes.

V. CONCLUSIONS

This manuscript presents a theoretical and computational investigation into the previously unex-
plored coexistence and competition of two fundamental hydrodynamic instabilities: the pressure
gradient-driven Rayleigh-Taylor (RT) instability and the resonance-induced Faraday instability.
Through linear Floquet stability analysis and 2D numerical simulations, we demonstrate that
interface growth under combined density and vibration effects exhibits a Floquet-type behavior:
total displacement decomposes into modal growth of the most unstable Floquet mode and harmonic
oscillations from periodic terms. In an unbounded horizontal domain, we show that vibration can
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mitigate the growth rate of RT instabilities. This result aligns with the dynamical stabilization of RT
instabilities in confined containers, where physical boundaries restrict long wavelength modes. We
also reveal a previously unseen multi-modal instability region, where the RT and Faraday instabil-
ities coexist and compete in nontrivial and unintuitive ways. This region emerges as the oscillation
amplitude increases, marking a gradual transition in the dominant instability mechanism from RT
to Faraday. Within this region, we observed a unique bidirectional competitive interaction. The
growing Faraday mechanism, amplified by increasing vibration amplitude, consistently suppresses
the RT instability toward the zero-wave-number limit. In turn, the residual RT mechanism attenuates
the Faraday responses via a nonlinear damping mechanism, even when the initial growth rate of the
Faraday instability exceeds that of RT. Furthermore, the coexistence of these mechanisms generates
multiscale interfacial waves, culminating in interfacial breakup phenomena that are ubiquitous in
both natural and engineered systems, yet remain uncharted in prior studies.

Although linear stability analysis predicts a multi-modal instability region where RT and Faraday
instabilities should coexist, numerical simulations reveal a critical nuance. While each instability
develops independently at its theoretically predicted growth rate, sustained coexistence is difficult
to achieve due to the nonlinear damping of Faraday waves by RT-induced flows. This bidirectional
competition offers a plausible explanation for the absence of simultaneous RT and Faraday insta-
bilities in most natural settings. Nonlinear approaches, such as weakly nonlinear stability analysis,
offer a promising way to account for these cross-mode interactions. Extending the analysis and
simulations to 3D, although more computationally demanding, enables the capture of more complex
interfacial instability patterns, such as squares and hexagons. These structures provide a more
faithful representation of real-world scenarios. Nevertheless, the current 2D approach effectively
captures the competition between the instability mechanisms at different scales and remains valid
under geometric symmetries that permit dimensionality reduction, such as azimuthal decomposition
in cylindrical containers.

The discovery of coexistence and competition between RT and Faraday instabilities offers new
insights into predicting and controlling fluid interfaces in vibration-prone systems. Our findings
bridge fundamental hydrodynamics and engineering, leveraging instability interactions of the fluid
to control the interface kinematics. Vibrations dynamically stabilize RT modes while exciting Fara-
day instabilities, and the inclusion of RT waves, in turn, nonlinearly dampens the unstable Faraday
response. By tuning the oscillation, processes like atomization or inertial confinement fusion can be
optimized to suppress both low- and high-wave-number instabilities, thereby enhancing efficiency
and preventing failure. These insights reveal new avenues for studying transient dynamics in natural
and engineering flow systems, where external vibrations compete with intrinsic instabilities, ranging
from geophysical flows to the injection of bubbles.
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APPENDIX

Substituting the general solution in Eq. (13) into the boundary conditions in Eqs. (14) to (17)
yields a linear system comprising eight boundary conditions:

an,l + bn,l + cn,l + dn,l = an,d + bn,d + cn,d + dn,d = γ ∗
n ζ̂ ∗

n ; (A1)

an,l − bn,l + qn,l cn,l − qn,l dn,l = an,d − bn,d + qn,d cn,d − qn,d dn,d ; (A2)

η
(
2an,l + 2bn,l + (

q2
n,l + 1

)
cn,l + (

q2
n,l + 1

)
dn,l

)
= 2an,d + 2bn,d + (

q2
n,d + 1

)
cn,d + (

q2
n,d + 1

)
dn,d ; (A3)

an,l e
k∗ + bn,l e

−k∗ + cn,l e
k∗qn, j + dn,l e

−k∗qn, j = 0; (A4)

an,d e−k∗ + bn,d ek∗ + cn,d e−k∗qn, j + dn,d ek∗qn, j = 0; (A5)

an,l e
k∗ − bn,l e

−k∗ + qn,l cn,l e
k∗qn,l − qn,l dn,l e

−k∗qn,l = 0; (A6)

an,d e−k∗ − bn,d ek∗ + qn,d cn,d e−k∗qn,d − qn,d dn,d ek∗qn,d = 0. (A7)

Upon simplification, this system can be compactly represented in matrix form using the matrix Qn,
defined as

Q∗
n ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0

1 1 1 1 −1 −1 −1 −1

1 −1 qn,d −qn,d −1 1 −qn,l qn,l

2 2 1 + q2
n,d 1 + q2

n,d −2η −2η −η
(
1 + q2

n,l

) −η
(
1 + q2

n,l

)
e−k∗q+

n,d e−k∗q−
n,d e−2k∗q+

n,d 1 0 0 0 0

q+
n,d e−2k∗ −q−

n,d 2qn,d e−k∗q+
n,d 0 0 0 0 0

0 0 0 0 e−k∗q−
n,l e−k∗q+

n,l 1 e−2k∗qn,l

0 0 0 0 −q−
n,l q+

n,l e
−2k∗

0 2e−k∗q+
n,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A8)

Here, the superscripts (·)+ and (·)− are used to denote q+ ≡ q + 1 and q− ≡ q − 1. The boundary
conditions are thus compactly written as

Qn(an,d , bn,d , cn,d , dn,d , an,l , bn,l , cn,l , dn,l )
T = (γ ∗

n ζ̂ ∗
n , 0, 0, 0, 0, 0, 0, 0)T. (A9)

Equation (A8) can be directly employed to solve the linear system in various limiting cases, such as
small or large wavelengths, extreme viscosity and density ratios, and large domain heights, without
introducing spurious numerical instabilities. This simplification thus enables a comprehensive
analysis of interfacial dynamics across varying density contrasts, viscous effects, and domain sizes.
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