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ABSTRACT

Fluid flow simulations marshal our most powerful computational resources. In many cases, even this is not enough. Quantum computers
provide an opportunity to speed up traditional algorithms for flow simulations. We show that lattice-based mesoscale numerical methods can
be executed as efficient quantum algorithms due to their statistical features. This approach revises a quantum algorithm for lattice gas autom-
ata to reduce classical computations and state preparation at every time step. For this, the algorithm approximates the qubit relative phases
and subtracts them at the end of each time step. Phases are evaluated using the iterative phase estimation algorithm and subtracted using
single-qubit rotation phase gates. This method optimizes the quantum resource required and makes it more appropriate for near-term quan-
tum hardware. We also demonstrate how the checkerboard deficiency that the D1Q2 scheme presents can be resolved using the D1Q3
scheme. The algorithm is validated by simulating two canonical partial differential equations: the diffusion and Burgers’ equations on differ-
ent quantum simulators. We find good agreement between quantum simulations and classical solutions for the presented algorithm.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0217675

I. INTRODUCTION

Solving partial differential equations (PDEs) is necessary for
modeling most scientific problems. However, it is computationally
expensive, especially for large domains and high-dimensional configu-
ration spaces. For example, in computational fluid dynamics, the cost
of performing a direct numerical simulation of turbulence increases
with Reynolds number, representing the ratio of inertial to viscous
effects in the flow, asOðRe3Þ.1 Such high computational expense moti-
vates a broad category of work to achieve algorithmic speedups for
PDE solvers.

Quantum computers are emerging as an increasingly viable tool
for algorithm speedup enabled by the principles of quantum mechan-
ics, such as superposition and entanglement. In some cases, exponen-
tial speedups over classical computer architectures (like that of von
Neumann) are possible.2,3 In the sciences, algorithmic complexity

improvements are seen in quantum chemistry,4 machine learning,5–7

finance,8,9 and more.
Quantum algorithms for solving PDEs have also gained attention.

Harrow et al.10 demonstrated the first quantum algorithm, HHL, for
solving linear systems of equations with exponential speedup. Such
improvements can be marshaled in the PDE space for solving discre-
tized systems of equations via, for example, the method of lines. Childs
and Liu11 proposed a quantum algorithm for linear ordinary differen-
tial equations (ODEs) based on spectral methods, providing a global
approximation to the solution using linear combinations of basis func-
tions. Childs et al.12 improved the complexity of quantum algorithms
for linear PDEs using adaptive-order finite difference and spectral
methods. Other approaches to solving PDEs were proposed by
Berry;13 for example, reducing an ODE system via discretization and
solving it via the appropriate quantum algorithms. Gaitan14 used this
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approach to solve the 1D Navier–Stokes equations for the flow through
a convergent–divergent nozzle. However, these methods require deep
circuits and many quantum gates to achieve results comparable to
what one can solve on even a modern laptop. This limitation is prohib-
itive for most of the algorithms mentioned above but paints a bright
future for larger, fault-tolerant quantum devices that can better reject
gate noise.

In the near term, variational quantum algorithms are well-suited
for current NISQ (noisy intermediate-scale quantum) devices. For
example, hybrid quantum–classical procedures can evaluate the solu-
tion quality via a cost function using a quantum computer and opti-
mize variational parameters using a classical computer. Thus, variation
methods enable quantum algorithms with relatively shallow gate
depths and qubit counts. Bravo-Prieto et al.15 introduced the varia-
tional quantum linear solver (VQLS), which uses the Hadamard test to
solve a linear system. Liu et al.16 showed that a Poisson problem can
be solved by first converting it to a linear system amenable to the quan-
tum alternating operator ansatz (QAOA) algorithm. However, varia-
tion algorithms require a (sometimes) unclear ansatz and do not
guarantee convergence or speedup. The continued tension between
these quantum algorithm threads has contributed to improving each.

Because of the linearity of quantum mechanics, quantum algo-
rithms aiming to solve nonlinear PDEs are immature compared to the
linear case. Liu et al.17 proposed the first quantum algorithm for dissi-
pative nonlinear differential equations using the method of Carleman
linearization, which maps the system of nonlinear equations to an
infinite-dimensional system of linear differential equations, which are
then solved using quantum linear system algorithms. Their algorithm
was tested to solve the 1D Burgers’ equation. Kyriienko et al.18 used
the variational method based on differentiable quantum circuits to
solve nonlinear differential equations. Their method solved a quasi-1D
approximation of Navier–Stokes equations. Lubasch et al.19 used mul-
tiple copies of variational quantum states and tensor networks to solve
nonlinear PDEs.

Other promising numerical methods include mesoscale strategies,
which operate between molecular and continuum scales. Lattice meth-
ods are a common example and are well-suited for quantum computa-
tion because they are intrinsically statistical, resolving only samples or
probabilities of the fictitious particles they comprise. Moreover, they
are based on simple mathematical calculations and are suitable for par-
allel computation because interactions between lattice nodes are linear,
and nonlinearity enters during a local collision step. The lattice
Boltzmann method (LBM) is a common approach that solves the
Boltzmann transport equation. Mezzacapo et al.20 developed the first
quantum simulator following a lattice kinetic formalism to solve fluid
dynamics transport phenomena. Todorova and Steijl21 solved the colli-
sionless Boltzmann equation on a quantum computer, inspired by
quantum algorithms solving the Dirac equation. Budinski22 proposed
a novel quantum algorithm that solves the advection–diffusion equa-
tion by the LBM and extended it to solve the two-dimensional (2D)
Navier–Stokes equations using stream function–vorticity formula-
tion.23 This technique has a logarithmic scaling of qubits relative to lat-
tice grid size. Itani and Succi24 explored the Carleman linearization of
the collision term of the lattice Boltzmann equation. Using this lineari-
zation technique, Itani et al.25 proposed a quantum lattice Boltzmann
algorithm where collision and streaming are achieved by unitary evolu-
tion. Schalkers and M€oller26 propose a space-time encoding method to

implement unitary collision and streaming operators without
linearization.

The LBM originates from the lattice gas automata (LGA), a cellu-
lar automaton that can simulate fluid flows. A quantum computer can
be viewed as a quantum cellular automaton (QCA), where each cell is
a quantum system with a state depending on neighboring cells.
Quantum LGA is a subclass of QCA that represents particles interact-
ing under physical constraints and evolving on a lattice. The main
drawback of the LGA is statistical noise, though this vanishes when
crafted for mesoscopic scales. Yepez27 introduced the first quantum
LGA (QLGA) algorithm for simulating fluid flow at the mesoscopic
scale using a discretized Boltzmann transport equation.

The original algorithm was designed for a specialized type-II
quantum computer, proposed in the early 2000s.28 Such computers
consisted of several small quantum computers connected by classical
communication channels, allowing qubit shifts during the algorithm’s
streaming step.28 Type II architectures no longer exist. Instead, we pre-
sent an algorithm more suitable for current architectures that avoids
some assumed-efficient operations on previous Type II devices. For
example, many QLGA/LBM algorithms require estimating the distri-
bution functions needed to re-prepare the quantum states at each time
step. This process can be prohibitively expensive on current, and likely
future, quantum devices.

Herein, we present an approach that overcomes the limitations of
previous lattice-based quantum algorithms shown by Yepez.28,29 We
focus on improving the efficiency and scalability of previous QLGA
techniques. The cost of general quantum state preparation scales expo-
nentially with respect to the qubit count.30 This expensive step,
assumed in previous quantum lattice-based methods using amplitude
encoding, presents scaling issues for utility-scale simulations. Our
work seeks to mitigate these expense and scalability issues. The pro-
posed algorithm uses a quantum implementation of the streaming
step, approximates the qubit relative phases, and subtracts them at the
end of each time step, avoiding repeated encoding operations and
delaying the need for measurement to the end of the computation.

We do not interrogate the practicality of the presented algorith-
mic strategies on actual quantum devices but rather on simulators.
The algorithm presented herein is not appropriate for solving practical
fluid dynamics problems, in full, on current quantum devices, for
which there is perhaps no known algorithm at the time of writing.
Instead, simulators help achieve validation and facilitate analysis.
Specifically, we implement our algorithm in Qiskit31 and XACC for
the diffusion and Burgers’ equations.

This manuscript continues as follows. Section II describes the
classical lattice gas automata and lattice Boltzmann method. Section III
introduces the quantum counterpart of the classical LGA. Section IV
presents the QLGA variants we propose, including quantum stream-
ing, the D1Q3 scheme, and a restless quantum lattice Boltzmann
method (QLBM) algorithm. We validate these variants by testing them
to solve the 1D diffusion and Burgers’ equations. Last, Sec. V compares
different quantum simulation strategies for the proposed algorithm
using Qiskit and XACC.

II. CLASSICAL LATTICE METHODS

The lattice gas automata (LGA) method is a cellular automaton
that simulates fluids.32,33 The LGA state is described by occupation
numbers: Boolean variables indicating whether or not a fictitious parti-
cle is present at a specific lattice node, moving in a certain lattice
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direction at a specific time. These fictitious particles obey local collision
rules that conserve mass and momentum.

The main drawback of LGA is noise, which can be reduced via
coarse-graining over large domains or time intervals but remains costly
in computing time and memory. Instead, LGA can be directly modeled
at the mesoscopic scale with the Boltzmann equation.34,35 This approach
is called the lattice Boltzmann method (LBM), which eliminates the
LGA noise by replacing Boolean variables with continuous distributions,
i.e., the mean occupation numbers, also called density distribution func-
tions. We take this approach herein, which is thus a QLBM-type tech-
nique. The LBM approach replaces the collision rule with a continuous
function called the collision operator. The distribution functions fa
(0 � fa � 1) evolve in time according to the kinetic equation,

faðr þ caDt; t þ DtÞ ¼ faðr; tÞ þ Xa faðr; tÞ½ �; (1)

where r is the position of a lattice site, ca is the lattice velocity, Dt is the
time step, t is time, Xa is the collision operator, and a refers to the
velocity discretization index. During one time step, as illustrated in
Fig. 1, the computation evolves through two processes: collision, where
particles meet at the same lattice site, and their distribution functions
are evaluated according to the collision operator Xa, and streaming,
where particles shift to the neighboring sites following their lattice
directions. Collision causes the relaxation of all local distribution func-
tions to an equilibrium whereXa½fa ¼ f eqa � ¼ 0.

Each discretization of the velocity space is described by its num-
ber of spatial dimensions a and velocity directions b, with scheme
notation DaQb. For example, a D1Q2 scheme uses a 1D lattice with
two velocity directions, i.e., a right-going particle and a left-going parti-
cle for each lattice site.

Macroscopic variables, like the fluid density or velocity, are deter-
mined from the moments of the distribution functions.36 For example,
the density at lattice site i corresponds to

qi ¼
Xb
a¼1

fa;i: (2)

Herein, we divide 1D spatial domains into Ns uniformly spaced lattice
sites i ¼ 0;…;Ns � 1. For example, domain X 2 ½0; L� has site loca-
tions xi ¼ iDx where Dx ¼ L=Ns is the lattice spacing, usually set to 1.

III. QUANTUM LATTICE METHODS

The quantum LGA (QLGA) is a measurement-based algorithm
that introduces a superposition of qubit states within a small spatial

region and for a short period. It directly maps the bits used in a classical
lattice gas to qubits and models the lattice gas at the mesoscopic scale,
which can be described using the lattice Boltzmann equation. Figure 2
shows an example of the associated quantum circuit used to solve the
1D diffusion equation using the D1Q2 scheme defined in Sec. II. The
algorithm has four operations: (re)initializing the qubit states via encod-
ing, collision at each lattice site, measuring the qubit occupancy via locali-
zation, and streaming the qubits on the lattice appropriately.

Encoding and collision are performed in the quantum space, but
the measurement step and classical streaming computation mean the
quantum state must be re-encoded. The encoding step in QLGA27

scales linearly in the number of qubits required for encoding with
respect to the size of the simulation. There are QLBM methods22,23

that scale logarithmically with respect to the size of the grid. However,
these entail a prohibitively large number of quantum gates (in many
cases more than 105 for even a small, simplified problem) a trade-off
that may be unappealing.

The system wavefunction can be written as

jWðx0; x1;…; xNs�1; tÞi ¼ �Ns�1

i¼0
jWðxi; tÞi: (3)

Following Dirac’s bra-ket notation, the ket vector jWðxi; tÞi represents
the on-site state, i.e., at the lattice site of coordinate xi, of dimension 2b.
In the D1Q2 scheme, each lattice site comprises two particles, one
moving to the right and the other to the left. The first step of the
QLGA algorithm is mapping each particle to one qubit by encoding
the occupancy probability faðxi; tÞ to ath qubit as

jqaðxi; tÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� faðxi; tÞ

p
j0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
faðxi; tÞ

p
j1i

for i ¼ 0;…;Ns � 1 and a ¼ 1; 2: (4)

FIG. 1. Illustration of collision and streaming steps for a single time step of a D2Q5 scheme.

FIG. 2. QLGA with classical streaming (Ref. 27). Ry is a rotation gate by the angle
ha ¼ 2arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� faðxi ; tÞ

p
for the qubit of state jqaðxi ; tÞi. The controlled

ffiffiffi
x

p
gate can be decomposed efficiently on the latest IBM Heron and Eagle processors,
which consists of a two-qubit controlled phase rotation Pðp=2Þ gate between two
Hadamard gates on the target qubit.
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This step is implemented via the RyðhaÞ rotation gate with angle
ha ¼ 2arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� faðxi; tÞ

p
for the qubit of state jqaðxi; tÞi. Then, the

full quantum state at each lattice site xi is the tensor product state of
two qubits,

jWðxi; tÞi ¼ jq1ðxi; tÞi � jq2ðxi; tÞi for i ¼ 0;…;Ns � 1: (5)

The relative phase of the qubits is set to zero in this step. Then, QLGA
applies the collision locally to each lattice site, a unitary operation that
relaxes the distribution functions to equilibrium. The postcollision
state is

jW0ðxi; tÞi ¼ UjWðxi; tÞi; (6)

where U is the collision operator that causes local quantum entangle-
ment of the on-site qubits. It is implemented via a unitary gate with a
block-diagonal entangling U(2) matrix as follows:

1 0 0 0

0 ei/ein cos h ei/eif sin h 0

0 �ei/e�if sin h ei/e�in cos h 0

0 0 0 1

0
BBBB@

1
CCCCA; (7)

where /, n, f, and h are Euler angles chosen to satisfy the PDE of inter-
est in the continuum limit. We choose / ¼ �p=4, n¼ 0, f ¼ p=2,
and h ¼ p=4 to model the diffusion equation and / ¼ 0; n ¼ f, and
h ¼ p=4 to model Burgers’ equation.29,37

The next step is measuring all the 2Ns qubits associated with Ns

lattice sites. Notice the local nature of these measurements. The algo-
rithm starts with a product state. The encoding (re-preparation) and
collision steps are local operations inside each lattice site and, hence,
do not change the structure of the product state. Thus, the number of
measurements required in each time step scales linearly with the num-
ber of lattice sites. Then, the postcollision occupancy probabilities
f 0aðxi; tÞ are computed from measurement outcomes. The nonunitary
measurement operation destroys the quantum superposition and
entanglement that the collision step may have caused. The postcolli-
sion occupancy probability is

f 0aðxi; tÞ ¼ hW0ðxi; tÞjnajW0ðxi; tÞi; (8)

where na are the number operators (observables that can be measured
to count the number of particles) for a ¼ 1; 2.

Streaming is performed by shifting the qubits to their neighboring
positions according to their right (a¼ 1) or left (a¼ 2) lattice direc-
tions. The poststreaming occupancy probabilities can be written as

faðxi; t þ DtÞ ¼ f 0aðxi þ eaDx; tÞ; (9)

where e1 ¼ �1 and e2 ¼ 1 are the qubit directions, Dx is the spacing,
and Dt is the time step.

These four operations can be encapsulated in the following
equation:

faðxi þ eaDx; t þ DtÞ ¼ faðxi; tÞ þ Xa faðxi; tÞ½ �; (10)

which is in the form of the classical lattice Boltzmann equation with
the collision operator given by

Xa faðxi; tÞ½ � ¼ hWðxi; tÞjðU†naU � naÞjWðxi; tÞi: (11)

Equilibrium distributions can be found by satisfying the equilibrium
condition: Xa½fa ¼ f eqa � ¼ 0. For the diffusion equation, we get equal
equilibrium probabilities f eqa ¼ q=2 for a ¼ 1; 2.37 For Burgers’ equa-
tion, the equilibrium distribution corresponds to f eqa ¼ q=2

þea=2
� ffiffiffi

2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðq� 1Þ2

q �
.29 The equilibrium distributions for

diffusion and Burgers’ equations differ due to the inherent differences
in the underlying physical processes. The equilibrium state of the diffu-
sion equation is characterized by maximum entropy and minimum
energy. This equation results in a smooth, uniform distribution.
Meanwhile, the equilibrium state of Burgers’ equation is characterized
by the balance of convective and diffusive forces.

This streaming step was designed to run classically on type-II
quantum computers.28 One time step of QLGA consists of the four
operations described above. Unlike most quantum gate models, where
measurement is performed at the end of the computation, QLGA
requires measurement at each time step to extract the distribution
functions, which are then used to encode the next step. Next, we pre-
sent a method for improving these unnecessary computations that is
more appropriate for modern quantum hardware.

IV. A FULLY QUANTUM LATTICE BOLTZMANN
ALGORITHM

This section presents a single-quantum computer version of
QLGA that avoids the type-II quantum computers of previous studies.
We formulate a fully quantum lattice Boltzmann method (QLBM)
algorithm and verify it against known, classical solutions. Since our
techniques solve the lattice Boltzmann equation at the mesoscopic
scale using density distributions instead of Boolean operators, we
denote our QLGA variants as QLBM.

A. Quantum streaming

The first revision to the QLGA algorithm performs the streaming
step using quantum operations, not through classical postprocessing.
It can be implemented before the measurement step via the permuta-
tion function that applies a sequence of SWAP gates to shift the qubits
to their neighbors. The corresponding quantum circuit is shown in
Fig. 3 for the diffusion and Burgers’ equations.

We validate the proposed variant by solving the 1D diffusion and
Burgers’ equations using Gaussian and sinusoidal distributions as the
initial condition, respectively. Periodic boundary conditions are used.
We compare the two QLBM solutions, i.e., with classical streaming
and quantum streaming, with the classical solution using the D1Q2
scheme and 26 simulated qubits. The simulations were performed
using a Qiskit AerSimulator with the statevector simulation method,
and the counts were sampled from the statevector using 105 shots. The
spatial domain consists of Ns¼ 13 lattice sites corresponding to 26
qubits. Results are shown after ten time steps.

The results of Fig. 4 demonstrate good agreement with the classi-
cal solution. This variant removes the need for classical communica-
tion between lattice sites and does not cause global entanglement, as
SWAP gates merely interchange the qubit quantum states. Since the
quantum streaming does not change the local nature of product states,
the total number of measurements required in each time step still
scales linearly with the number of lattice sites.

In terms of complexity, we examine the relationship between the
circuit depth and the system size by analyzing the different operations
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of the algorithm separately. The encoding step consists of applying one
rotation gate simultaneously to each qubit. Thus, changing the grid
resolution and the qubit number does not affect the circuit depth. The
same unitary operator is applied to each pair of qubits for the collision
step. Thus, the circuit depth scales as Oð1Þ with the number of qubits
n. For the streaming step implemented using the permutation func-
tion, the number of SWAP gates applied to one of the qubits increases
linearly with the number of qubits. Therefore, the complexity of the
algorithm is given by OðnÞ. A D1Q3 scheme can also be implemented
by using an extra qubit to create a smoother curve (Fig. 9), as shown in
Appendix A. For a D1Q2 problem with a point source, particles do
not remain in the original lattice site but propagate through the lattices
over time. Therefore, a D1Q3 lattice scheme produces a smoother
curve due to the nonzero distribution at one lattice site.

B. Restless QLBM

An issue with QLGA is that the quantum state collapses due
to measurements performed during each time step, requiring
re-encoding. However, we should allow the qubits to explore more
complex states to achieve truly quantum computation. Furthermore,
measurement on superconducting quantum computers can typically
take an order of magnitude longer than gate times, adding significant
time to the algorithm.38 Thus, the goal is to eliminate repeated initiali-
zation of the quantum state and repeated measurements.

We attempted a unitary transformation using random rotations
to reset the qubit relative phases after each time step. However, this

random phase kicking leads to dephasing, where the expected value of
the off-diagonal elements of the density matrix decay to zero with
time.30 Therefore, a different approach is needed.

To this end, our algorithm adds a phase correction step, approxi-
mating the qubit relative phases and subtracting them at the end of each
time step, delaying the need for measurement until the end of the com-
putation. Phase correction is achieved via quantum phase estimation
(QPE) as a sub-routine to estimate the eigen-phases of the encoding and
collision unitaries.30 These eigen-phases are then used to classically esti-
mate the qubit relative phases, subtracted at the end of each time step.
The accuracy of the QPE depends on the number of ancillary qubits it
uses. Thus, we use the iterative phase estimation (IPE) algorithm, which
only requires a single auxiliary qubit and evaluates the phase bit by bit
through a repetitive process.39 The accuracy of the IPE algorithm is
determined by the number of iterations instead of the number of ancil-
lary qubits. Therefore, they are of great importance for near-term quan-
tum computing. The IPE algorithm still requires measurement to
estimate the phase. However, only one qubit, i.e., the auxiliary qubit, is
measured, and not all qubits are in the quantum register.

Although the phase estimation algorithm could help avoid mea-
surements at the end of each time step and re-preparation in the next
time step, it introduces extra O(n) mid-circuit measurements in each
time step. This overhead balances off the save for measurement. What
is left is the resource reduction for state re-preparation with O(T) cir-
cuit depth, where T is the number of time steps.

In the context of QLBM, we apply the IPE algorithm to every lat-
tice site, i.e., to a two-qubit unitary for the D1Q2 scheme. We set the

FIG. 3. QLBM with quantum streaming solving (a) the diffusion equation and (b) Burgers’ equation. The permutation block encapsulates a sequence of SWAP gates that shift
the qubits during the streaming step.

FIG. 4. QLBM solutions to (a) the diffusion equation and (b) Burgers’ equation using the D1Q2 scheme. “Quantum—classical streaming” corresponds to the classical streaming
algorithm discussed in previous work (Ref. 27), “Fully quantum” refers to the present algorithm using direct measurements, and “Classical” is the classical implementation of
the lattice method. The small differences between Quantum—classical streaming and Fully quantum are due to finite sampling in quantum measurement.
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unitary U to be the product of the encoding and the collision opera-
tions since the streaming step only swaps the qubits and does
not change their phases. For a total number of iterations m, the IPE
algorithm estimates the best m bit approximation to / with
u ¼ 0:u1…um ¼ Pm

k¼1 uk=2
k, where uk are the phase bits

(1 � k � m) in binary expansion. At each iteration, k, the IPE algo-
rithm applies the unitary U 2m�k times controlled on the auxiliary
qubit. Due to phase kickback, the relative phase of the auxiliary qubit
becomes expði2p0:um�kþ1um�kþ2…umÞ. Thus, to estimate the phase
bit um�kþ1, a phase correction of�2pðum�kþ2=2

2 þ � � � þ um=2
mÞ is

performed, controlled on the measurement outcome of the previously
estimated phase bits um�kþ2;…;um. The phase bit um�kþ1 is then
estimated by measuring the auxiliary qubit in the x-basis. The first two
iterations of the IPE algorithm, which estimates the two least signifi-
cant bits of the phase um and um�1, is illustrated in Fig. 5(a). One time
step of the restless QLBM circuit is shown in the circuit of Fig. 5(b),
which consists of collision, streaming, and phase correction
operations.

Figure 6 presents the numerical simulation of our variant using
the IPE algorithm to solve the 1D diffusion equation. The simulation
uses the D1Q2 scheme with 26 qubits and runs on the statevector sim-
ulator. The spatial domain consists of Ns¼ 13 lattice sites, and results
are shown after six time steps. The quantum solution and the classical
one agree well, with the root-mean-square error between them below
the finite sampling threshold. This variant improves the efficiency of
the QLGA algorithm as the encoding is used only once at the begin-
ning of the computation to prepare the quantum states, and measure-
ment is only performed at the end of the computation.

The number of iterations m is determined by the desired accu-
racy, here 1=2q, with a probably of success of at least p, via

m ¼ qþ log 2 2þ 1
2ð1� pÞ

� �� �
: (12)

The difference between the estimated phase u and the actual phase
/ satisfies 0 � Du � 1=2q, where Du ¼ /� u. The probability of
success p quantifies the likelihood one measures the best m bit
approximation u.30 Such a probability is lower bounded by
4=p2 � 0:405 but can be problematic in larger qubit cases. Since the
IPE algorithm only operates on each lattice site, running locally on
each site requires bþ 1 qubits. Hence, the desired accuracy 1=2q is a
more important factor. We numerically verify that it suffices to
choose q¼ 12 and p¼ 0.75, hence m¼ 14, to conduct a simulation
comparable to classical solutions in Fig. 6(a), where the finite
approximation error Ns=2q for phase estimation is smaller than the
finite sampling threshold 1=

ffiffiffiffi
N

p
. We further compare how different

numbers of iterations m impact the overall algorithmic error in
Fig. 6(b). For a larger simulation, q can be determined as
q � log 2 Ns

ffiffiffiffi
N

p	 

. One can readily generalize this algorithm to a

DaQb scheme, where the size of the quantum circuit for the IPE
algorithm increases to bþ 1 qubits. This change increases circuit
complexity, though not necessarily the number of bits.

Regarding complexity, having only one ancillary qubit comes
with the cost of Oð2m�1Þ gates, where m is the number of IPE itera-
tions related to the precision of the estimated phases. Given unbiased
assumptions, the finite sampling error of the iterative phase estimation
scales proportional to 1=

ffiffiffiffi
N

p
, where N is the shot number in quantum

FIG. 5. (a) IPE circuit used to estimate the qubits relative phase ai (first two iterations) and (b) restless QLBM circuit solving the diffusion equation.

FIG. 6. (a) Restless QLBM (present work) solution to the diffusion equation using the IPE algorithm with m¼ 14 iterations, N ¼ 105 shots, and its comparison to classical
results for the same method and resolution. (b) Comparing different number of iterations m impact the overall algorithmic error.
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measurement. A qubit state is multiparametric, so subtracting the
phase with a single estimation is more efficient.

V. RESULTS

We test different quantum simulator implementations of our
QLBM algorithm and its circuit for verification. An in-depth discussion
of the scaling of these simulators can be found in Appendix B. In this
section, we takemeasurements from each simulator to show the general
trends of RMSE with respect to the quantum hardware constraints.

We run the QLBM circuit of Fig. 3 on the four different simula-
tors and compare their performance. Figure 7 shows and the root-
mean-squared error (RMSE),

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNs�1

i¼0

qðquant:Þi � qðclassic:Þi

� �2

Ns

vuuuut
; (13)

where Ns is the number of lattice sites of the quantum solution com-
pared to the classical one as a function of the number of shots (samples
from the underlying density functions) and qubits. The errors are
reported from simulations as a function of the number of lattice sites
in Fig. 7(a) and as a function of the number of shots in Fig. 7(b).

These figures demonstrate the scalability of this method. The
RMSE for the algorithm follows the trend of decreasing quadratically
with the number of shots, as shown in Fig. 7(b). An RMSE of 0.01
occurs at less than 104 shots. This accuracy level is proportional to
1=

ffiffiffiffi
N

p
due to finite sampling of the quantum state, where N is the shot

number. The number of qubits does not affect the RMSE greatly, as
shown in Fig. 7(a), and the technique can scale well to more lattice sites
with a linear increase in qubits.

The MPS simulator uses a local representation in a factorized
form of tensor products.40 MPS ensures that the overall structure
remains small as long as the circuit has a low degree of entanglement,
enabling more simulated qubits. To demonstrate this, we run the
QLBM circuit of Fig. 3(a) on the Qiskit MPS simulator for a resolution
of 51 lattice sites corresponding to 102 qubits using 106 shots. Results
after ten time steps are shown in Fig. 8 and demonstrate good agree-
ment with the classical solution.

VI. CONCLUSION AND DISCUSSION

In this work, we present a revised quantum lattice gas algorithm
that can be used to simulate fluid flows. The algorithm of Yepez41 was
designed for type-II quantum computers that are no longer used. The
presented algorithm uses a full quantum implementation of the
streaming step to reduce classical communication between lattice sites.
In addition, quantum streaming optimizes repetitive encoding opera-
tions by estimating the qubit relative phases and subtracting them at
the end of each time step. State re-preparation and measurements can
scale exponentially in modern computers, and our work on state prep-
aration optimization is essential for efficiently adapting the QLGA to
modern hardware. The algorithm is tested to solve canonical PDEs:
the diffusion and Burgers’ equations. We explored different quantum
simulators available on Qiskit and XACC quantum computing frame-
works and compared their performance and wall-clock time. Matrix
product state simulators are most efficient for the presented quantum
circuits, as they have low and local entanglement. These strategic algo-
rithm improvements enable the execution of the quantum lattice gas
algorithm on quantum hardware, a subject of future work.

An important limitation of the current algorithm is the size of the
required quantum register, which scales linearly with the number of

FIG. 7. RMSE of the quantum solution solving the diffusion equation compared to the classical one. (a) 104 shots and (b) 18 qubits. Qiskit (solid lines, ——) statevector and
MPS simulators and XACC simulators (dashed lines, – – –) qpp and exatn-mps are shown. The colors correspond to (blue) statevector-like and (orange) matrix product state
simulators. Notably, each lattice site contains two qubits for a D1Q2 scheme.

FIG. 8. QLBM solution using D1Q3 scheme to the diffusion equation using the Qiskit
MPS simulator and its comparison to classical results using 102 qubits.
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lattice sites. For example, the number of required qubits in a two-
dimensional M	M lattice is 5M2 using the D2Q5 scheme. This
requirement constrains the ability to extend this algorithm to higher
dimensions due to the limited number of qubits available on current
quantum hardware. Thus, more appropriate encoding schemes, such
as amplitude-based encoding, are needed to scale logarithmically with
the number of lattice sites. For example, Budinski22 implements the
streaming step via a quantum random walk, similar to the collisionless
Boltzmann equation solved on a quantum computer by Todorova and
Steijl.21 Indeed, in principle, one could design an algorithm that uses a
quantum random walk for both the collision and streaming opera-
tions, which we will investigate in future work.
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APPENDIX A: D1Q3 IMPLEMENTATION

The implementations of the QLBM mentioned in Secs. II and
III used the D1Q2 scheme, which uses two moving particles per lat-
tice site. This scheme shows checkerboard pathologies when using a
sharp function as the initial condition because it simulates two inde-
pendent sublattices.27 Yepez37 presents a cure for this, allowing only
one qubit to move while the other remains stationary. However, this
requires two collision and streaming procedures per time step. Our
results show that the quantum D1Q3 scheme, which adds a station-
ary qubit to each lattice site, solves this problem. A D1Q3 scheme
has three particle distributions across three links: left, right, and sta-
tionary. So, some fictitious particles remain stationary in a time
step, smoothing the curve. Figure 9 compares the quantum solution
of the diffusion equation using the D1Q2 scheme with the D1Q3
scheme for a delta function as the initial condition. These simula-
tions were performed using the Qiskit matrix product state simula-
tor, 45 qubits for the D1Q3 scheme, and the sampling procedure
used 106 shots. The spatial domain consists of Ns¼ 15 lattice sites,
and results are shown after ten time steps. The result shows that the
quantum D1Q3 solution agrees with the classical one and that the
D1Q3 version remedies the checkerboard effect. We note that the
D1Q3 scheme does not affect algorithmic complexity and can
employ measurement avoidance analogous to the D1Q2 scheme
presented in the main manuscript body.

FIG. 9. QLBM solutions to the diffusion equation using the D1Q3 scheme.
Quantum—classical streaming corresponds to the classical streaming algorithm dis-
cussed in previous work (Ref. 27), Fully quantum refers to the present algorithm,
and Classical is the classical implementation of the lattice methods as labeled.
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APPENDIX B: SIMULATOR RESULTS

In Fig. 10, we show the results for different quantum simulator
implementations of our algorithm and its circuit. Simulators include
statevector-based and tensor-network types that use the matrix
product state (MPS) method.42 Two different simulation frame-
works are tested: Qiskit and XACC.43 Statevector and MPS simula-
tors are part of the Qiskit Aer backend. The XACC qpp
(Quantumþþ) simulator is based on a Cþþ general-purpose quan-
tum computing library.44 The XACC exatn-mps simulator is a part
of the TNQVM (tensor-network quantum virtual machine) simula-
tion backend and uses a noiseless, matrix product state (MPS) wave
function decomposition for the quantum circuit.45 The wall-clock
times of Fig. 7(c) were obtained via simulation on an AMD EPYC
7742 (64-core) processor.

We find that the results are shot-noise limited, and all quan-
tum simulators obtain the same accuracy in terms of RMSE, which
decreases from less than 10% for 102 shots to less than 1% for 104

shots. However, the Qiskit MPS simulator is at least one order of
magnitude faster than the statevector ones. This behavior is
expected. The Qiskit statevector and XACC (qpp) simulators gener-
ate the full state vector, which scales exponentially with the number
of qubits.
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FIG. 10. Wall-clock time in seconds using 104 shots.
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