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oses a multi-circuit quantum lattice Boltzmann method (QLBM) algorithm that leverages parallel quantum c
ntum resource requirements. Computational fluid dynamics (CFD) simulations often entail a large comp
sical computers. At present, these simulations can require up to trillions of grid points and millions of time
ovel architectures like quantum computers may be intrinsically more efficient for these computations. Current
solving CFD problems are based on a single quantum circuit and, in many cases, use lattice-based methods

ces are adorned with sufficient noise and make large and deep circuits untenable. We introduce a multip
a quantum lattice Boltzmann method (QLBM) solution of the incompressible Navier–Stokes equations. Th
-frugal, aims to create more practical quantum circuits and strategies for differential equation-based probl
od is validated and demonstrated for 2D lid-driven cavity flow. The two-circuit algorithm exhibits a notable
hich account for the majority of the runtime on quantum devices. Compared to the baseline QLBM tec

ategy shows increasingly large improvements in gate counts as the qubit size, or problem size, increase
e CX count was reduced by 35%, and the gate depth decreased by 16%. This strategy also enables concurre
ther halving the seen gate depth.

antum algorithms; lattice Boltzmann method; parallel quantum computation; quantum resource reduction
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n and application of quantum computation for
computing
lly intensive algorithms are obstacles to the scien-
g and engineering communities. Quantum com-
ieve complexity improvements by leveraging the
uantum mechanics, making them of interest. A

mple of this so-called quantum speedup is demon-
r’s algorithm [1]. The algorithm finds the prime

of integers in logarithmic time, an exponential
the best-known classical algorithm. Other quan-
s include linear systems solvers [2, 3], Monte
[4], and machine learning algorithms [5, 6]. With
ress in quantum hardware, these algorithms have

in industries such as optimization [7], quantum
, and finance [9]. The potential for such large
es partial differential equation (PDE) solvers at-
ever, classical problems in this realm tend to be

s: shb@gatech.edu (Spencer H. Bryngelson)
lable at: https://github.com/comp-physics/

nonlinear and non-unitary, presenting hurdles for quan
puting [10]. Attention has been turned toward addre
challenge.

1.2. Quantum computation for computational fluid dyn

Computational fluid dynamics (CFD) problems ofte
some of the world’s largest classical supercomputers
Focus has been directed toward alternative quantum a
for these problems [11–26]. The connection betwe
tum mechanics and fluid dynamics emerged early on
the Madelung equations, a reformulation of the Sch
equations [12, 27]. This relationship between quant
puting and CFD was further explored in 1993, when S
Benzi [28] used the lattice Boltzmann equation to desc
relativistic quantum mechanics.

Over a decade later, the Harrow–Hassidim–Lloyd (H
rithm, a sparse linear solver with exponential quantum
was used to solve the incompressible Navier–Stokes equ
Many quantum CFD solvers are also based on the qua
gular value transformation algorithm [29]. Hybrid qua
classical algorithms have also been presented for C
lems [30–32]. One reduces the CFD problem to a f
a quantum device can solve, and the latter solves t
ing linear system. However, the advantage posed by

d to Elsevier Ap
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uantum computers is in itself a challenge: load-
ntially large state space representative of n qubits
plitudes to be encoded on a quantum computer.
aches have been taken, but present generalized
hods are upper-bounded by an exponential com-
], with slightly improved efficiency and depth on
se matrices [37].

computing for mesoscale CFD methods
tends the body of work focused on mesoscale
id simulations. The dissipative particle dynamics

n equation-based methods are commonly used in
putation. Boltzmann-based equations character-
cal behavior of a system of particles, and their
n in a quantum setting is the focus of this work.
n methodology is primarily solved using lattice
LGA) [38, 39] and the lattice Boltzmann method
1]. LBM is the more advantageous of the two
bles noise resilience and flexibility in complex
imulations. Prior studies have presented adapta-
ethods. For example, previous bodies of work

tum algorithms for the lattice gas model [42–44].
, a quantum lattice gas model was presented by
ski, Niemimäki, and Lahtinen [45] with improved

2020, Todorova and Steijl [46] described a quan-
for the collisionless Boltzmann equation. This

nts for the case of nearly free molecular flows
g complex non-unitary particle collisions.

e problem is the first step in mapping the lattice
thod to a form suitable for quantum applications.
with nonlinear terms is due to the linear frame-
h quantum computing is defined. Budinski [47]
first complete quantum lattice Boltzmann method
he advection–diffusion equation. The proposed
ates particles across a grid of lattice sites with
inear collision operator and extracts macroscopic
mesoscopic simulations. Later, Budinski [48] ex-
e approach to solve the 2D lid-driven cavity flow
m function–vorticity formulation of the Navier–
ns. This adaptation removes the pressure term,
roblem to an advection–diffusion equation and a
m, solved on a single and dense quantum circuit.

ented in this paper is a direct improvement on [48]
the computation of stream function and vorticity
its and hence achieve circuit complexity improve-
hile, Wawrzyniak et al. [49] further generalized

and arbitrary velocity set.

ide, the Carleman and Koopman–von Neumann
ave been used extensively to linearize equations
omputing [50, 51]. The Carleman linearization
s the variables of nonlinear equations directly into
te up to certain truncation level. This approach
s over the Koopman linearization, which instead

riables through orthogonal polynomials. Itani and

evolution for both the collision and streaming opera
Subsequently, Sanavio and Succi [53] introduced a QL
rithm that simulated Kolmogorov-like flows using the
linearization method. They demonstrated that their im
tion of the single-time-step operator would have a fix
depth.

1.4. Limitations and recent improvements

Many of the proposed algorithms are presumed to o
fault-tolerant quantum computers [17, 48, 53, 54]. Alth
theory is promising, noise and decoherence in present
devices result in high error rates. Consequently, fou
algorithms, such as HHL, cannot be supported on mod
tum hardware [30]. The coherence time of a device is
of time during which the quantum device reliably mai
state such that the results obtained are within reason
Circuits whose runtime exceeds this coherence time ou
tions that contain excessive noise, making them unus
sensitivity to the environment makes it challenging to sc
tum algorithms, as they require a large number of q
a result, the aforementioned quantum CFD algorithm
simulated.

The limitations in current quantum hardware are de
Noisy Intermediate-Scale Quantum (NISQ). These li
have driven research towards hybrid variational qu
gorithms (VQAs) for both adiabatic and gate-based
computing [57]. The adiabatic configuration models th
as an energy minimization problem cast as an Ising
nian [58]. However, this approach is unable to adapt
control over precision and other parameters [59].

Gate-based VQAs are proposed as near-term replacem
HHL without the quantum advantage. Demirdjian e
solved the 1D advection–diffusion equation via Carl
earization with reasonable accuracy. This approac
variational quantum linear solver [61] to compute the
Lubasch et al. [62] demonstrated that VQAs may ac
nonlinear effects. However, beyond a certain circuit
noisy devices, VQAs are unlikely to outperform optim
cal counterparts [63]. Thus, methods to reduce the circ
and number of quantum gates applied are beneficial.

Several proposed modifications to the QLBM algo
presented by Budinski [47, 48], aim to address the is
quiring extensive quantum resources, including circ
and entangling two-qubit gate counts. For instance, t
implementation employs a basic (canonical) shift alg
realize particle streaming in the model. Budinski et a
duced the two-qubit gate counts of the canonical shift
by a constant factor using parallel state shift in both 1D
right lattice directions. Meanwhile, new improvemen
ticle collision steps have been explored [65–68] throu
encoding schemes. Among them, Wang et al. [68] pr
interesting ensemble description that combines LBM
Xu et al. [67] also improves the collision term by intro
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ancilla-free implementation with a small reduction of O(Nqubit)
two-qubit gates. Last, Tiwari et al. [69] demonstrated the first
2D QLBM sol
quantum hardw
using 10 time
initialization,
scheme.

1.5. Objective
This manuscr
referred to as
Navier–Stokes
in the realizati
ski [48] can be
two solves can
on the same q
superposition,
to read out sol
is validated ag
driven cavity
for QLBM-fru
parallelized im
the classical L
equation. Sect
tion of the LBM
section 4, the
the 2D Navier
verification ag
quantum resou
limitations of
of the presente

2. Mathemat

2.1. Advection
The advection
treats advectio
governing adv

where advectio
by D(∂2ϕ/∂x2

coefficients, a
the advection–
the foundation

2.2. General l
The LBM mod
flow over time

fα(r + eα∆

where fα indic
is the velocity
is the cell pos

of particles streaming in link α, and ϵ = ∆t/τ where τ is the
relaxation time. We more generally define r using Cartesian

on of the
pace, we
e express
tion may
epresents
ed by the

we inves-
el. For a
ttice grid
ich parti-
diffusion
s.

1Q2 con-
at

(3)

The sym-
equality.
tribution

(4)

osition r
speed of
cordance
3 config-
re e0 = 0
ollowing

e. Budin-
mble the
work [47]

adapt this
ethod for

as

(5)

is defined
diffusion

4), where
e defined
irections
Jo
ur

na
l P

re
-p

ro
of

ve of the advection–diffusion equation on IonQ’s
are. They evolve an initial Gaussian distribution

steps and 19-qubits with careful tensor network
improved streaming step, and an error detection

s
ipt presents a two-circuit 2D QLBM algorithm,
QLBM-frugal here, to solve the incompressible
equations. The major motivation of this work lies
on that the dense single-circuit scheme of Budin-
decomposed into two independent solves. These
hence be optimized using classical parallelization

uantum processor without sophisticated quantum
but come at the cost of tomographic techniques
utions and pass them to each other. The method
ainst the classical LBM solution to the 2D lid-

flow problem. The quantum resources required
gal are compared to other approaches, and the
plementation is discussed. Section 2 describes

BM theory for simulating the advection–diffusion
ion 3 shows a single-circuit quantum implementa-

for solving the advection–diffusion equation. In
two-circuit quantum implementation for solving
–Stokes equations is provided. Section 5 presents
ainst the classically-solved LBM simulation and
rce estimations. Section 6 discusses the current

the work. Section 7 summarizes the contributions
d method and its potential impact.

ical formulation

–diffusion equation
–diffusion equation describes flow in a way that
n and diffusion as concurrent processes. The

ection–diffusion PDE is

∂ϕ

∂t
+ c

∂ϕ

∂x
= D

∂2ϕ

∂x2 , (1)

n is defined by c(∂ϕ/∂x) and diffusion is defined
). Here, c and D are the advection and diffusion
nd ϕ(t, x) is a scalar concentration field. We use
diffusion algorithm devised by Budinski [47] as
for the presented multi-circuit approach.

attice Boltzmann formulation
el for fluid flow simulates the evolution of particle
, given by [70, 71] as

t, t + ∆t) = (1 − ϵ) fα(r, t) + ϵ f (eq)
α + ∆wαS , (2)

ates the particle distribution along each link α. eα
of a particle in α, t is time, δt is the time step, r

ition, S is the source term, wα is the proportion

coordinates, whose notation depends on the dimensi
vector space. For example, in a one-dimensional s
express r = (x), while in a two-dimensional space, w
r = (x, y). Figure 1 shows how the particle distribu
be visualized along a grid of cells. Each time step r
particle movement into neighboring cells, as determin
above equation.

To solve (2) in the one- and two-dimensional planes,
tigate three configurations of the spatial lattice mod
DnQm configuration, we consider an n-dimensional la
with m = |α| links, where each link is a direction in wh
cles are propagated. This paper considers advection–
results for the D1Q2, D1Q3, and D2Q5 configuration

2.3. Formulation for one-dimensional scheme

Initially, we devise a one-dimensional model for the D
figuration. Two velocity vectors are considered such th

e1 = −e2 = ∆x/∆t

for corresponding distribution functions f1 and f2.
metric boundary condition of the LBM imposes this
Our model resolves around the local equilibrium dis
function [72], formulated as

f (eq)
α (r, t) = wαϕ(r, t)

(
1 +

eα · c
c2

s

)
,

where ϕ(r, t) corresponds to the lattice site at lattice p
= (xi), c is the advection velocity vector, and cs is the
sound. We set the weights w1,2 = 0.5 and cs = 1, in ac
with the approach by Budinski [47]. Likewise, the D1Q
uration is considered with three velocity vectors, whe
and e1 = −e2 = 1. Let the speed of sound cs = 1/

√
3 f

Servan-Camas and Tsai [73].

2.4. Formulation for two-dimensional scheme

We now consider the two-dimensional D2Q5 schem
ski [48] shows that these equations are reduced to rese
advection–diffusion formulation, referencing his earlier
in setting the parameters and governing formulas. We
advection–diffusion formulation to a multiple-circuit m
advection and diffusion. This formulation is expressed

∂ϕ

∂t
+ c

∂ϕ

∂x
= D

∂2ϕ

∂x2 ,

where advection is defined by c(∂ϕ/∂x) and diffusion
by D(∂2ϕ/∂x2). Here, c and D are the advection and
coefficients and ϕ(t, x) is a scalar concentration field.

The equilibrium distribution function is solved using (
r = (xi, yi). Let cs = 1/

√
3 [73] and the weights b

such that w0 = 2/6 and w2,3,4 = 1/6 respective to the d
illustrated in fig. 1 [74].

3
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w0

w1

w3

w2

ration of a D2Q5 LBM lattice with a streaming particle
s wα.

dard practice [40], the relaxation time τ relates to
onstant D with

D = c2
s

(
τ − ∆t

2

)
. (6)

D = 1/6 and τ = ∆t. Recall we have set cs =

ves ε = τ/∆t = 1 and

fα(r + eα∆t, t + ∆t) = f (eq)
α (7)

+ eα∆t, t + ∆t) = wαϕ(r, t)
(
1 +

eα · c
c2

s

)
, (8)

the collision (4) and the streaming steps (7). The
field is thus

ϕ(r, t) =
N−1∑

α=0

fα(r, t), (9)

particle distributions across all link directions

Lattice Boltzmann method

Lattice Boltzmann method for the advection–
equation

ss the premise of the body of work devised by
Consider, first, the advection–diffusion equations.

circuit performs the collision operator, followed
ng of particles and recalculation of macroscopic
ndary conditions are applied at the end of each

special care is needed when boundary conditions
he left and right shift gates L and R automatically
ndary conditions to the designated lattice site
. Figure 2 illustrates how the quantum circuit’s

anized into 4 registers, or groupings of qubits, to
ction–diffusion equation using a D2Q5 scheme.
nd r1 contain Nqubit = log2(M) qubits, where M

of lattice sites in each dimension. Register d
qubits, where m is the number of LBM links α.
ds a single ancilla qubit necessary for applying
y collision operator using linear combination of
).

scribed in the work of Shende et al. [75] is employed. A
encoding is part of the Qiskit toolkit [76], although i
generic encoding algorithm with an expensive gate c
further elaborate on this in section 6.

At the start of each time step, we are given a distribut
We define ϕ(α, r) to be the value of ϕ at time t and pos
link direction α. Given a discretized concentration

ϕ(α, r) = [ϕ(0, 0), ϕ(0, 1), ϕ(0, 2), . . . ,
ϕ(4,M − 2), ϕ(4,M − 1), ϕ(4,M)],

the initial statevector |ψ0⟩ is

|ψ0⟩ = |0⟩a ⊗
1
||ϕ||

2M−1∑

i=0

ϕ(α, r) |i⟩ .

This formulation normalizes ϕ(α, r), and the initial qu
follow from amplitude encoding. In fig. 2, register
the data at each link direction α. This data can be ret
specifying the link α in register d.

Applying the collision operator to the initial statevect
equivalent to multiplying the ϕ(α, r) with weight coeffic

wα

(
1 +

eα · c
c2

s

)
,

which follow from (4). This strategy is discussed furt
next subsection.

3.1.2. Collision operator
The collision step (fig. 2 (a)) computes the equilibriu
bution function f (eq)

a , which requires computing the p
of the distribution ϕ in each link α. The collision op
tails applying the coefficient matrix A to the current st
|ψ0⟩.
The coefficient matrix A is not unitary, so it cannot b
translated into a quantum gate. To mitigate this, an i
strategy, devised by Childs and Wiebe [78], is emp
Budinski [48]. Suppose we split A into a linear com
of unitary matrices, C1 and C2, related to the origin
as

C1,2 = A ± i
√

I − A2.

As A = (C1 +C2)/2, an operation with A is computed
encoding [79, 80], where C1 and C2 are unitary, bu
general, not.

The circuit in fig. 3 evolves an input statevector |ψ⟩ acc
the large unitary

U =
1
2

[
V +W V −W
V −W V +W

]
,

4
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M circuit for an advection–diffusion time step as devised by Budinski [47]. The collision operator A = (C1 + C2)/2
{L,R} propagate particles in each link direction α. In panel (c), a Hadamard gate [77] is applied to the qubits in registe

H H

V W

ock encoding of B = (V + W)/2. Here, V and W are
.

+W)/2. Thus, B is a subblock of the block matrix

selects quantum states for specific measurement
re, we use post-selection to measure the result

ion operator for a 0 ancilla (after the block encod-

atrix is

0
k2Im

]
, where kα = wα

(
1 +

eα · c
c2

s

)
(15)

efficients described by (12). Panel (a) of fig. 2
ombination of unitaries to apply matrix A to the
adamard gates are used in the block encoding
with C1 and C2 operations, which are derived

ry matrices in (13). The coefficients representing
of particles in each link α are k1 and k2. The

ices are

(±i arccos (k1))Im 0
0 exp(±i arccos (k2))Im

]
. (16)

perator A transforms statevector |ψ0⟩ via a linear
f C1 and C2, but requires an ancilla qubit a, which
nal data (C1−C2)/2 when the ancilla is |1⟩.
al data was ignored through post-selection. The
inear combination is

|ψ1⟩ = 1
||ϕ||

∑

i

ai,iϕi,i |i⟩ , (17)

s the post-collision values for each link direction

α, for which the ancilla is |0⟩.
The diagonal nature of the collision matrix A makes fu
mizations of interest. The C1 and C2 collision operator
from this A are diagonal and can be expressed in term
rotation gates and CX (or two-qubit gate) operations [8
exist approaches to optimize the implementation of
unitary gates [82, 83], although some rely on an effici
box oracle to compute mappings. The difficulty withi
comes from applying C1 and C2 as controlled unita
which introduce more costly CX gates to the circuit de
tion after transpilation. Thus, work has been done to
the general collision term. Xu et al. [67] design a col
erator that removes the role of the ancilla register usin
controlled-Ry gates, achieving a linear reduction on th
tude of O(log2(M)) in CX gate count, given an M ×
This improvement, among others, to the collision te
further reduce the resource usage and computational r
the proposed stream function and vorticity functions.

3.2. Particle streaming

The streaming step propagates particles in each link
neighboring site. Figure 5 shows the shift operators
which are controlled on registers d with ⌈log2(m)⌉ q
stream particles to neighboring lattice sites. The shift
are permutation matrices as

R =



0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



and L =



0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0
1 0 · · · 0

and are both unitary matrices.

The resulting statevector |ψ2⟩ has a distribution shi
neighboring lattice site, determined by its link value αi

shows how the right and left shift gates R and L are c
on the link qubits d to act on the part of the statev
distribution α.
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uit decomposition for (a) left shift and (b) right shift

s the up and down operators used in a 2D lattice,
lemented through the L and R operators applied
ft algorithm presented here is a canonical version
quantum random walk [84], which is composed of
ti-controlled X gates. This quantum subroutine is
ate the weights only in the streaming function, as
gs. 5 and 6. Many recent studies on QLBM [49,
this canonical shift algorithm due to its simplicity

ty.

more efficient shift algorithms aim to achieve a
hift towards multiple lattice directions. Compared
al shift algorithm, a parallel shift algorithm intro-
chieves state shift in both 1D left and right lattice
ividing the quantum state into even and odd basis
lthough both of them exhibit a linear scaling for
gate counts O(Nqubit), the parallel version largely

refactor of this linear gate complexity by a factor
rategy represents a meaningful, though constant,
particularly for large problem sizes. When consid-
e circuit of streaming step, the shift algorithm is
⌈log2(m)⌉ ancilla qubits and this eventually leads
X gates in total, where Nqubit is the total number
e circuit [67]. More recently, Tiwari et al. [69]
e the one-hot encoding with m − 1 ancilla qubits
ing step. By trading off between ancilla qubits
ts, this encoding would lead to a significant re-
gates. These improvements are specific to the
and can be additive to this work, but do not im-

usions regarding the separation of streaming and

r1 L R

d

Figure 5: Streaming for a two-dimensional lattice grid. The
step uses right and left shift operators to shift distributio
respective link directions α1 and α2 by controlling the gates
in each link register d. These gates are applied to qubits in
(right) shifts and qubits in r1 for up(down) shifts.

3.3. Macroscopic variable retrieval

We retrieve the distribution ϕ(r, t) by summing f (eq)
α

link directions α. Figure 2 shows how this is accomp
applying Hadamard gates to each of the qubits in link
d, as shown in fig. 2 (c) [77]. A Hadamard gate H ap
statevector |ψ⟩, resulting in

H|ψ⟩ = 1√
2

[
1 1
1 −1

] [
ψa

ψb

]
=

1√
2

[
ψa + ψb

ψa − ψb

]
=
ψa + ψb√

2

When the Hadamard gate is applied to a link qubit in d
the sum of the two amplitudes as the |0⟩ amplitude
difference as the |1⟩ amplitude. Thus, the sum can
selected by ignoring |1⟩ measurements. With this post-
the Hadamard gates sum the distributions but introduc
of 1/

√
2 per gate. This pre-factor is post-processed o

computation by multiplication of a factor of
√

2log2

m = |α| is the number of link distributions. At each t
we retrieve the circuit result via state tomography, wh
be used to extract the first M lattice site elements.

4. Quantum Lattice Boltzmann method for the Navi
equations

4.1. Stream function–vorticity formulation

The incompressible 2D Navier–Stokes equations in C
coordinates are

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
= −∂p

∂x
+

1
Re

(
∂2u
∂x2 +

∂2u
∂y2

)

∂v
∂t
+ u

∂v
∂x
+ v

∂v
∂y
= −∂p

∂y
+

1
Re

(
∂2v
∂x2 +

∂2v
∂y2

)

where u and v are the velocity components in the x and
nate directions, p is the pressure, and Re is the Reynold
which is the ratio of inertial to viscous effects [85].

Taking the curl of the above Navier–Stokes equation
them in the so-called vorticity–stream function formu
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∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω, (22)

+ u
∂ω

∂x
+ v

∂ω

∂y
=

1
Re

(
∂2ω

∂x2 +
∂2ω

∂y2

)
. (23)

ation, (22) and (23) use vorticity ω and stream
tead of directional speeds u and v. The velocity
u = {u, v}. The stream function relates to the
ocities as

∂ψ

∂x
= u and

∂ψ

∂y
= −v. (24)

Poisson equation in stream function ψ and (23) is
diffusion equation in vorticity ω.

-based representation
m function–vorticity formulation, the collision,
macro lattice stages follow as

f (eq)
α (r, t) = wαω(r, t)

(
1 +

eα · u
c2

s

)
, (25)

+ eα∆t, t + ∆t) = f (eq)
α , (26)

ω(r, t) =
∑

α

fα(r, t). (27)

buttressed via the circuits of section 3.1, enable
computation.

m distribution function for the Poisson equation
g(eq)
α (r, t) = wαψ(r, t). The streaming and macro

se of sections 3.2 and 3.3, but the source term S =
uring the collision step (a). Thus, the relaxation

α(r + eα∆t, t + ∆t) = g(eq)
α + ∆wαS , (28)

ieval equation

ψ(r, t) =
∑

α

gα(r, t). (29)

ry conditions
problem for the proposed method is a 2D lid-
ow. The spatial domain is Ω ∈ x, y with lengths

boundary ∂Ω. The stream function ψ is constant
ndaries, with ψ = 0 used here. For the lattice
thod,

)
= g0 + g1 + g2 + g3 + g4, so, g∂Ω = −

∑

α|α,∂Ω
gα.

(30)

orticity expression (22) in terms of the stream

ωi,Nqubit = −2
ψ

∆y2 +
U
∆y

,

along the boundaries ∂Ω, where U is wall-parallel ve
the top wall. For a stationary wall, U = 0. The wall eq
distribution in the direction of the wall is

g(x, y)∂Ω = −
∑

α|α,∂Ω
gα − 2

( −ψ
∆y2 +

U
∆y

)
.

To implement (32), the matrix

B =



0 · · · 0
... INqubit−2

...
0 · · · 0


,

is applied to the statevector |ϕ⟩, where B is of size
Nqubit, Nqubit = log2(M) in each dimension, and In de
size n identity matrix. Setting g∂Ω = 0, while retain
distribution values, enforces the boundary conditio
stream function circuit |ψb.c.⟩ = |0⟩⊗Nqubit .

The vorticity circuit boundary conditions are applied vi
combination of B to account for its nonlinear nature. T
unitary combination is

D1,2 = B ± i
√

INqubit − B2,

following section 3.1.2.

4.2. Two-circuit model

The deviation from Budinski [48]’s original algorithm
two-circuit approach, which defines distinct circuits fo
ing the stream function and vorticity. To devise this,
the advection–diffusion circuits, as discussed in [47
ply different bounds specific to the lid-driven cavity
discuss each circuit in more detail below.

4.2.1. Vorticity circuit
The vorticity circuit computes the vorticity ω for th
time step. The vorticity circuit in fig. 6 and advection–
circuit in fig. 2 are nearly identical, save for the boun
ditions. This matching occurs because the vorticity
in (23) follows the same form as the diffusion equat
Navier–Stokes algorithm’s vorticity circuit is the sam
advection–diffusion one if the boundary conditions are c
classically.

If boundary conditions are included, an extra qubit b sto
Boundary conditions require additional computation,
ing such conditions is not a unitary operation. For this,
combination of unitaries is used [86], described furth
tion 3.1.2. The input to this circuit for the no-boundar
is the vorticity from the previous time step, ωt−1. Wh
boundary conditions, the circuit input includes pre-c

7
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riginal D2Q5 vorticity circuit proposed by Budinski [47], modified from the generalized circuit in fig. 2 for boundary
rcuit includes an additional qubit, b, to store the boundary conditions and perform computations. We propose an algo
t into two distinct parts.

C1 C2

H

H H

collision portion of the stream function circuit. An
s stores the source term, and an additional Hadamard
fter the block encoding adds the source term to the link
before streaming.

itions in the boundary qubit b, computed follow-
tions in section 4.1.2.

function circuit
nction circuit is the other quantum circuit used
rcuit model. The D2Q5 stream function circuit
7 is referred to for additional context. This cir-
to the advection–diffusion circuit with classical
itions but includes an additional source term. Fig-
e principle difference between these circuits; the
it s stores the source term, S = −ω.

2 gates also operate on the source term, and the
e on qubit s adds this source to the stream func-
ium distribution function g(eq)

α . The same qubit-
ss from Section 4.2.1 applies. Boundary condi-
n additional b qubit store and a boundary gate
t unitary and again is implemented via a linear
f matrices following (14). The previous stream

, and source term, S = −ωt−1, serve as the input
function circuit. The boundary conditions are
rding to section 4.1.2 for our quantum boundary

ant.

5. Simulations and results

The QLBM algorithm of Budinski [48] uses a sing
to solve the Navier–Stokes equations. This work bu
corresponding research on advection–diffusion algorit
QLBM-frugal separates the computational process int
stream function and vorticity circuits. We verify the a
against that of Budinski [47]. We consider two case
advection–diffusion algorithm, the D1Q2 and D1Q3 latt
and validate the implementation accuracy before sepa
stream function and vorticity circuits. We also consi
driven cavity problem to verify the two-circuit approa
this, we can compare how the resource use of the a
scales under increasing lattice site count against the
Budinski [47].

5.1. Advection–diffusion equation

We apply the QLBM circuit to the advection–diffusion
to obtain results for two example configurations. We ve
results against the expected outcomes returned by the
LBM. In the 1D case, D1Q2 and D1Q3 lattice schemes
a dense concentration of ρ = 0.2 at source xi = 10, un
advection and diffusion with uniform advection veloc
1/5 and diffusion coefficient D = 1/6. The validation
for the 2D case follows a diffusing concentration ρ
source (xi, y j) = (4, 4) and 0.1 elsewhere, solved via
scheme.

Figure 12 shows the results of statevector simulation
timesteps. A checkboard pattern arises in the D1Q2
cause the distribution moves wholly into neighbori
resulting in half of the lattice sites having zero partic
algorithmic deficiency is remedied via the D1Q3 lattic
by setting the weight of vector w0, specified in fig.
Figure 12 (a) shows that D1Q3 resolves the checker
problem of D1Q2.

Figure 12 (b) shows the results of the 2D test proble
with the D2Q5 scheme after 20 timesteps. There exists

8
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sults of the D1Q3 algorithm at iteration 50 are obtained
ng of the quantum circuit at various sample sizes Nsamp..

= 4, y j = 4), with an advection velocity in the
y directions. The source advects in the direction
and diffuses outwards. The solution behaves as
grees with classical LBM results.

e further validated via finite sampling. Figure 9
sults of finite sampling with various shot sample
e verify the behavior of the algorithm by com-

e fidelity of results obtained via finite sampling to
of the ideal solution. The quantum state fidelity,
obabilistic) mixed quantum state ρ with respect
tum state ψ is expressed as

Fψ(ρ) = ⟨ψ|ρ|ψ⟩ = Tr(p|ψ⟩⟨ψ|). (35)

expected solution obtained via the QLBM al-
is the probabilistic outcome obtained via finite
ods. From the equation defined in (35), we con-
perfectly resembles the ideal solution, then we
1. The fidelity is expected to be expressed as a

e number of shots Nsamp. used in the experiment,
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Figure 10: Verification via linear convergence with shot n
the advection–diffusion D1Q3 algorithm.

where in accordance to Yu et al. [87]

Nsamp. ∝ 1
1 − Fψ(ρ)

Figure 10 shows the results of this verification. The
the fit line in fig. 10 is 1.01, a 1% difference from the
proportion.

5.2. Navier–Stokes equations

Figure 11 shows isocontours of the stream function
driven cavity problem. The problem serves to verify
circuit QLBM against a classical implementation of t
Boltzmann method.

To define relative errors between the quantum and
lattice algorithms, we denote

ψi, j = ψ(xi,y j) and ωi, j = ω(xi,y j),

9
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CX Gates Circuit Depth

Single-circuit QLBM 25 58
Stream function 4.3 9.4

Vorticity 12 39
on without boundaries 4.2 15

um resource estimation (all counts are in units of 104)
rithm with lattice size 64 × 64.

∆x and y j = j∆y. The local L1 relative error
lassical and two-circuit QLBM Navier–Stokes

ssic. − ψquant.
i, j

ψclassic.
i, j

and εω;i, j =
ωclassic.

i, j − ωquant.
i, j

ωclassic.
i, j

.

(38)

rrors are shown for the cavity problem in fig. 13.
ws that the two-circuit QLBM agrees with the
when simulated with the statevector simulator

K [76]. The statevector simulator perfects exact
ut is generally limited to small simulations due
lly increasing memory requirements with qubit

m resource estimation and improvement
the two-circuit method for solving the Navier–
ns using quantum lattice-based algorithms shows
urce advantages over the single-circuit method.
s are achieved in two areas: two-qubit gate count
wo-qubit gates like CX are slower and more error-
gle-qubit gates, which has prompted bodies of

tation time for each gate in the circuit. As such, the r
approximately proportional to the circuit depth.

We show the reduction in gate counts by converting t
into a series of equivalent one- and two-qubit gates via
transpiler. This procedure is conducted on a 64× 64 lat
no prior optimizations or conversions to backend-spe
sets. Table 1 shows that pre-computing the boundary c
using classical methods reduces the gate count by at l
By running the QLBM-frugal stream function and vor
cuits concurrently, circuit depth is reduced to the m
depth of its constituent circuits. Table 1 shows that a 33
tion in circuit depth when compared against the sing
algorithm by Budinski [48].

We similarly transpile the results relative to a select
During compilation, we set the optimization level to
defined in Javadi-Abhari et al. [76] documentation.
mization levels in Qiskit range from 0 to 3, correspo
more aggressive optimization. The most aggressive
tions include noise-adaptive qubit mapping and gate can
This compilation reduces the circuit to one with fewer
retains the same functionality. Still, such optimization o
estly reduces gate counts in the cases discussed herein

The IBM Brisbane device is the backend of the tran
process. Brisbane supports 127 qubits and is sufficie
source estimation. The prior case of table 1 transpiled t
into a generalized set of gates. With the Brisbane
the transpiler identifies the device-specific gate set,
cludes single-qubit X, RZ, and SX gates, as well as the
Echoed Cross-Resonance (ECR) gate. ECR gates and a
single-qubit rotations are applied to implement a CX g
reducing the ECR gate count is commensurate with a
in the CX count. The transpilation, optimization, and
estimation processes are both performed on a local
device before simulation.

Table 2 illustrates the resource estimation for a 16 ×
size case. All algorithms shown in the table, inclu
QLBM algorithm by Budinski [48], are optimized via
transpiler before resource estimation. Table 2 shows t
optimization, we see a 33% reduction in ECR gates. O
ECR gates applied, table 2 shows that the boundary c
make up 44% of the ECR gate counts in the QLB
algorithm. It remains to be shown whether the red
two-qubit gates offsets the cost of computing these b
a classical device. Doing so involves accounting for t
size, hardware capabilities, and error rates of the g
computing the results of the stream function and vortici
concurrently, the circuit depth is reduced by 41%.

We now consider how the resource estimation chan
respect to the lattice size. First, the growth in ECR gate
observed in fig. 14 as the algorithm scales from a 2×2
lattice size. Figure 14 shows that the number of two-q
required by Budinski [48]’s QLBM algorithm increa
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eless, fig. 15 demonstrates that running QLBM-
el achieves a reduction in runtime when compared
Budinski [47].
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Figure 15: Runtime estimation for the proposed D2Q5 QLB
algorithm without quantum bounds, compared against the
gorithm proposed by Budinski [47]. The circuit is trans
optimization level 3 on the IBM Brisbane backend.

6. Limitations of current work

6.1. Hardware limitations

Current quantum devices have high noise floors and l
counts. LBM problems are often large, requiring man
and so are beyond the capabilities of current quantum
The results presented here are derived from quantum s
Concurrently executing the stream function and vorticit
doubles the number of required qubits if they are “par
on the same quantum device. Instead, the quantum
be distributed across multiple quantum processors; how
limit the present work to a single-device analysis.

While the qubit count is doubled, the depth of each
reduced from the initial algorithm proposed by Budi
This strategy reduces the overall runtime and two-q
count. However, the estimated runtime exceeds the c
time of available hardware by several orders of magni
presented method still depends on quantum simulators
small problems.

6.2. Encoding and readout costs

The algorithm of Budinski [47] and the presented tw
approach begin with an arbitrary state. This approach
that the state has been encoded in the quantum RAM or
alent set of qubits. Unless the amplitudes are roughly
the encoding process is costly. For some quantum al
this could reduce the expected quantum advantage o
classical counterparts to a polynomial one [33]. In t
implementation of state preparation, the resource co
exponentially with respect to the number of qubits [8
appreciating the impacts of encoding can inform the ap
of QLBM algorithms.

The final readout process depends on the final state
lution. Quantum state tomography measures (or read
state of the quantum device. One requires O(3Nqubit )
ments to determine the quantum state of a 2Nqubit -dim

12
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Hilbert space [90]. This exponential readout cost can mean-
ingfully impact the runtime and required resources. This cost
motivates an i
costs or admi
phy. More effi
in special case
lem [90–94].

7. Conclusion

This work pre
mann method
equations. We
circuit compu
modifications
Stokes equatio
We first verifie
frugal algorith
the lid-driven
menting both Q
between the re
cating the algo

Moreover, we
tion in the two
circuit implem
Quantum devi
to errors and
ber of two-qu
We demonstra
count followin
bane device fo
gate count wh
gate set on the
tion in the tot
stream functio
16 × 16 lattice
even for small
required to im
reduction elim
gates from the
the accumulate
Future works s
algorithms [64
counts.

The reduction
the 16× 16 lat
requirements
grow at a slow
expected numb
size, O(log M
Yepez [44]. T
scales more sl
are far from be
on current NIS
feasible and le
predecessors.

The encoding and readout costs remain a bottleneck for the
algorithm. The processes must be performed at each iteration

ormation
, and its
umber of
out costs,

devices

ul discus-
DARPA

Quantum
h used re-
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der Con-

and discrete
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09) 150502.
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antum com-
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mplementation that bypasses exponential readout
ts a heuristic-equipped final state for tomogra-
cient quantum state tomography methods exist
s, and the topic remains an active research prob-

sents improvements on the quantum lattice Boltz-
for solving the two-dimensional Navier–Stokes
present a QLBM algorithm that utilizes concurrent-
tation of the stream function and vorticity. These
introduce the possibility of solving the Navier–
ns via parallelization or distributed computing.
d the solution returned by the proposed QLBM-
m against classical LBM methods. We selected
cavity problem for algorithm verification, imple-

LBM and QLBM-frugal using Qiskit. The error
sults is negligible on ideal quantum devices, indi-
rithm is practical on fault-tolerant devices.

demonstrate that QLBM-frugal achieves a reduc-
-qubit gate count compared to the previous single-
entation of an otherwise similar algorithm [48].
ces are bottlenecked, in part, by limitations due
environmental interference. Reducing the num-
bit gates will improve the algorithm’s accuracy.
te a 33% reduction in the two-qubit ECR gate
g optimization and transpilation on the IBM Bris-
r the 16 × 16 lattice and a 35% reduction in CX

en the algorithm is transpiled relative to a general
larger 64 × 64 lattice, corresponding to a reduc-

al circuit depth. Concurrent computation of the
n and vorticity circuits reduces the depth on the
size case by 41%. This reduction is significant:
problems, nearly one million individual gates are
plement the circuit on quantum hardware. This
inates approximately O(105) qubit rotations and
computation for each iteration, thereby reducing
d error associated with continued gate application.
hould keep exploring more efficient parallel shift
] to higher dimensions and further reduce the gate

in ECR gates and depth extends to cases beyond
tice size. We show that the QLBM-frugal resource
for lattice sizes ranging from 2 × 2 to 32 × 32
er rate than that of the QLBM algorithm. The
er of qubits scales logarithmically with the lattice

), slower than the linear growth demonstrated in
he runtime of the present work, QLBM-frugal,
owly than the traditional QLBM case. While we
ing capable of implementing such a large circuit
Q hardware, the changes make the circuit more

ss prone to errors on an ideal device relative to its

to input the prior state of the system and extract the inf
following each computation. This process is costly
complexity scales exponentially with respect to the n
qubits. The current work does not address read-in or
although a comprehensive QLBM strategy for NISQ
requires attention to this aspect.
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Appendix A. List of Abbreviations

CFD co
HHL Ha
LBM lat
LGA lat
QLBM qu
NISQ no
VQA va
CX co
ECR ec

Appendix B.

c adv
D diff
ϕ(t, x) sca
α link
fα par
eα vel
t tim
r cell
S sou
wα pro
τ rela
n dim
m num
f eq
α equ

c⃗ adv
cs spe
L left
R righ
r1, r2 qua
M num
d qua
a qua
A col
C1,C2 uni
Nqubit tota
H Had
ω vor
ψ stre
x, y Car
g(eq)
α equ

gα par
ω spa
Lx x-le
Ly y-le
U top
ρ con
Nsamp. num
Fψ qua
 Jo

ur
na

l P
re

-p
ro

of

mputational fluid dynamics
rrow-Hassidim-Lloyd algorithm
tice Boltzmann method
tice gas automata
antum lattice Boltzmann method
isy intermediate-scale quantum
riational quantum algorithm
ntrolled-X gate (two-qubit gate)
hoed cross-resonance gate (two-qubit gate)

List of Variables

ection coefficient
usion coefficient
lar concentration field

index
ticle distribution along α
ocity of particle in α
e
position

rce term
portion of particles streaming in link α
xation time
ension of lattice grid
ber of directions of particle propagation, or links, given by |α|

ilibrium distribution
ection velocity vector
ed of sound
shift quantum gate
t shift quantum gate
ntum registers with log2(M) qubits
ber of lattice sites

ntum register with ⌈log2(m) qubits, corresponding to the links
ntum register with ancilla
lision coefficient operator
tary collision operators
l number qubits
amard gate

ticity
am function
tesian coordinate directions
ilibrium distribution function for the Poisson equation in link α
ticle distribution function for the Poisson equation in link α
tial domain in x, y space
ngth of spatial domain ω
ngth of spatial domain ω
lid value, i.e. boundary condition
centration at given site
ber sample sizes

ntum state fidelity
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