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 A B S T R A C T

This work proposes a multi-circuit quantum lattice Boltzmann method (QLBM) algorithm that leverages 
parallel quantum computing to reduce quantum resource requirements. Computational fluid dynamics (CFD) 
simulations often entail a large computational burden on classical computers. At present, these simulations 
can require up to trillions of grid points and millions of time steps. To reduce costs, novel architectures like 
quantum computers may be intrinsically more efficient for these computations. Current quantum algorithms 
for solving CFD problems are based on a single quantum circuit and, in many cases, use lattice-based methods. 
Current quantum devices are adorned with sufficient noise and make large and deep circuits untenable. 
We introduce a multiple-circuit algorithm for a quantum lattice Boltzmann method (QLBM) solution of 
the incompressible Navier–Stokes equations. The method, called QLBM-frugal, aims to create more practical 
quantum circuits and strategies for differential equation-based problems. The presented method is validated 
and demonstrated for 2D lid-driven cavity flow. The two-circuit algorithm exhibits a notable reduction in CX 
gates, which account for the majority of the runtime on quantum devices. Compared to the baseline QLBM 
technique, a two-circuit strategy shows increasingly large improvements in gate counts as the qubit size, or 
problem size, increases. For 64 lattice sites, the CX count was reduced by 35%, and the gate depth decreased 
by 16%. This strategy also enables concurrent circuit execution, further halving the seen gate depth.
1. Introduction

1.1. Motivation and application of quantum computation for scientific 
computing

Computationally intensive algorithms are obstacles to the scien-
tific computing and engineering communities. Quantum computers can 
achieve complexity improvements by leveraging the properties of quan-
tum mechanics, making them of interest. A prominent example of this 
so-called quantum speedup is demonstrated by Shor’s algorithm [1]. The 
algorithm finds the prime factorization of integers in logarithmic time, 
an exponential speedup over the best-known classical algorithm. Other 
quantum algorithms include linear systems solvers [2,3], Monte Carlo 
methods [4], and machine learning algorithms [5,6]. With the recent 
progress in quantum hardware, these algorithms have been applied 
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in industries such as optimization [7], quantum chemistry [8], and 
finance [9]. The potential for such large speedups makes partial differ-
ential equation (PDE) solvers attractive. However, classical problems 
in this realm tend to be nonlinear and non-unitary, presenting hur-
dles for quantum computing [10]. Attention has been turned towards 
addressing this challenge.

1.2. Quantum computation for computational fluid dynamics

Computational fluid dynamics (CFD) problems often require some 
of the world’s largest classical supercomputers to solve. Focus has 
been directed towards alternative quantum algorithms for these prob-
lems [11–26]. The connection between quantum mechanics and fluid 
dynamics emerged early on through the Madelung equations, a re-
formulation of the Schrödinger equations [12,27]. This relationship 
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between quantum computing and CFD was further explored in 1993, 
when Succi and Benzi [28] used the lattice Boltzmann equation to 
describe non-relativistic quantum mechanics.

Over a decade later, the Harrow–Hassidim–Lloyd (HHL) algorithm, 
a sparse linear solver with exponential quantum speedup, was used to 
solve the incompressible Navier–Stokes equations [2]. Many quantum 
CFD solvers are also based on the quantum singular value transfor-
mation algorithm [29]. Hybrid quantum and classical algorithms have 
also been presented for CFD problems [30–32]. One reduces the CFD 
problem to a form that a quantum device can solve, and the latter 
solves the resulting linear system. However, the advantage posed by the 
HHL algorithm does not account for the state preparation and readout 
requirements [33]. Implementing efficient input and output methods 
for quantum computers is in itself a challenge: loading an exponentially 
large state space representative of 𝑛 qubits requires 2𝑛 amplitudes to be 
encoded on a quantum computer. Various approaches have been taken, 
but present generalized encoding methods are upper-bounded by an 
exponential complexity [34–36], with slightly improved efficiency and 
depth on encoding sparse matrices [37].

1.3. Quantum computing for mesoscale CFD methods

This paper extends the body of work focused on mesoscale methods 
for fluid simulations. The dissipative particle dynamics and Boltzmann 
equation-based methods are commonly used in classical computation. 
Boltzmann-based equations characterize the statistical behavior of a 
system of particles, and their implementation in a quantum setting is 
the focus of this work. The Boltzmann methodology is primarily solved 
using lattice gas automata (LGA) [38,39] and the lattice Boltzmann 
method (LBM) [40,41]. LBM is the more advantageous of the two 
because it enables noise resilience and flexibility in complex multi-
physics simulations. Prior studies have presented adaptations of both 
methods. For example, previous bodies of work proposed quantum 
algorithms for the lattice gas model [42–44]. More recently, a quantum 
lattice gas model was presented by Zamora, Budinski, Niemimäki and 
Lahtinen [45] with improved efficiency. In 2020, Todorova and Steijl 
[46] described a quantum algorithm for the collisionless Boltzmann 
equation. This method accounts for the case of nearly free molecular 
flows while excluding complex non-unitary particle collisions.

Linearizing the problem is the first step in mapping the lattice Boltz-
mann method to a form suitable for quantum applications. This struggle 
with nonlinear terms is due to the linear framework on which quantum 
computing is defined. Budinski [47] introduced the first complete 
quantum lattice Boltzmann method (QLBM) for the advection–diffusion 
equation. The proposed method simulates particles across a grid of 
lattice sites with the truncated linear collision operator and extracts 
macroscopic quantities from mesoscopic simulations. Later, Budinski 
[48] extended the same approach to solve the 2D lid-driven cavity flow 
using the stream function–vorticity formulation of the Navier–Stokes 
equations. This adaptation removes the pressure term, reducing the 
problem to an advection–diffusion equation and a Poisson problem, 
solved on a single and dense quantum circuit. The work presented in 
this paper is a direct improvement on [48] by separating the computa-
tion of stream function and vorticity into two circuits and hence achieve 
circuit complexity improvements. Meanwhile, Wawrzyniak et al. [49] 
further generalized QLBM to 3D and arbitrary velocity set.

On the other side, the Carleman and Koopman–von Neumann em-
beddings have been used extensively to linearize equations for quantum 
computing [50,51]. The Carleman linearization method embeds the 
variables of nonlinear equations directly into a quantum state up 
to certain truncation level. This approach is advantageous over the 
Koopman linearization, which instead embeds the variables through 
orthogonal polynomials. Itani and Succi [52] demonstrated a Carleman 
linearization for the collision term and later extended the work to 
demonstrate unitary evolution for both the collision and streaming op-
erators [10]. Subsequently, Sanavio and Succi [53] introduced a QLBM 
algorithm that simulated Kolmogorov-like flows using the Carleman 
linearization method. They demonstrated that their implementation of 
the single-time-step operator would have a fixed circuit depth.
2 
1.4. Limitations and recent improvements

Many of the proposed algorithms are presumed to operate on fault-
tolerant quantum computers [17,48,53,54]. Although the theory is 
promising, noise and decoherence in present quantum devices result 
in high error rates. Consequently, foundational algorithms, such as 
HHL, cannot be supported on modern quantum hardware [30]. The 
coherence time of a device is the range of time during which the 
quantum device reliably maintains its state such that the results ob-
tained are within reason [55,56]. Circuits whose runtime exceeds this 
coherence time output solutions that contain excessive noise, making 
them unusable. The sensitivity to the environment makes it challenging 
to scale quantum algorithms, as they require a large number of qubits. 
As a result, the aforementioned quantum CFD algorithms must be 
simulated.

The limitations in current quantum hardware are denoted as Noisy 
Intermediate-Scale Quantum (NISQ). These limitations have driven 
research towards hybrid variational quantum algorithms (VQAs) for 
both adiabatic and gate-based quantum computing [57]. The adiabatic 
configuration models the system as an energy minimization problem 
cast as an Ising Hamiltonian [58]. However, this approach is unable to 
adapt to allow control over precision and other parameters [59].

Gate-based VQAs are proposed as near-term replacements for HHL 
without the quantum advantage. Demirdjian et al. [60] solved the 
1D advection–diffusion equation via Carleman linearization with rea-
sonable accuracy. This approach uses a variational quantum linear 
solver [61] to compute the solution. Lubasch et al. [62] demonstrated 
that VQAs may account for nonlinear effects. However, beyond a 
certain circuit depth in noisy devices, VQAs are unlikely to outperform 
optimal classical counterparts [63]. Thus, methods to reduce the circuit 
depth and number of quantum gates applied are beneficial.

Several proposed modifications to the QLBM algorithm, as pre-
sented by Budinski [47,48], aim to address the issue of requiring 
extensive quantum resources, including circuit depth and entangling 
two-qubit gate counts. For instance, the initial implementation employs 
a basic (canonical) shift algorithm to realize particle streaming in the 
model. Budinski et al. [64] reduced the two-qubit gate counts of the 
canonical shift algorithm by a constant factor using parallel state shift 
in both 1D left and right lattice directions. Meanwhile, new improve-
ments in particle collision steps have been explored [65–68] through 
novel encoding schemes. Among them, Wang et al. [68] presents an 
interesting ensemble description that combines LBM and LGA. Xu et al. 
[67] also improves the collision term by introducing an ancilla-free 
implementation with a small reduction of (𝑁qubit) two-qubit gates. 
Last, Tiwari et al. [69] demonstrated the first 2D QLBM solve of 
the advection–diffusion equation on IonQ’s quantum hardware. They 
evolve an initial Gaussian distribution using 10 time steps and 19-
qubits with careful tensor network initialization, improved streaming 
step, and an error detection scheme.

1.5. Objectives

This manuscript presents a two-circuit 2D QLBM algorithm, referred 
to as QLBM-frugal here, to solve the incompressible Navier–Stokes 
equations. The major motivation of this work lies in the realization that 
the dense single-circuit scheme of Budinski [48] can be decomposed 
into two independent solves. These two solves can hence be opti-
mized using classical parallelization on the same quantum processor 
without sophisticated quantum superposition, but come at the cost of 
tomographic techniques to read out solutions and pass them to each 
other. The method is validated against the classical LBM solution to the 
2D lid-driven cavity flow problem. The quantum resources required for 
QLBM-frugal are compared to other approaches, and the parallelized 
implementation is discussed. Section 2 describes the classical LBM 
theory for simulating the advection–diffusion equation. Section 3 shows 
a single-circuit quantum implementation of the LBM for solving the 
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advection–diffusion equation. In Section 4, the two-circuit quantum 
implementation for solving the 2D Navier–Stokes equations is pro-
vided. Section 5 presents verification against the classically-solved LBM 
simulation and quantum resource estimations. Section 6 discusses the 
current limitations of the work. Section 7 summarizes the contributions 
of the presented method and its potential impact.

2. Mathematical formulation

2.1. Advection–diffusion equation

The advection–diffusion equation describes flow in a way that 
treats advection and diffusion as concurrent processes. The governing 
advection–diffusion PDE is 
𝜕𝜙
𝜕𝑡

+ 𝑐
𝜕𝜙
𝜕𝑥

= 𝐷
𝜕2𝜙
𝜕𝑥2

, (1)

where advection is defined by 𝑐(𝜕𝜙∕𝜕𝑥) and diffusion is defined by 
𝐷(𝜕2𝜙∕𝜕𝑥2). Here, 𝑐 and 𝐷 are the advection and diffusion coeffi-
cients, and 𝜙(𝑡, 𝑥) is a scalar concentration field. We use the advection–
diffusion algorithm devised by Budinski [47] as the foundation for the 
presented multi-circuit approach.

2.2. General lattice Boltzmann formulation

The LBM model for fluid flow simulates the evolution of particle 
flow over time, given by [70,71] as 
𝑓𝛼(𝒓 + 𝑒𝛼𝛥𝑡, 𝑡 + 𝛥𝑡) = (1 − 𝜖)𝑓𝛼(𝒓, 𝑡) + 𝜖𝑓

(eq)
𝛼 + 𝛥𝑤𝛼𝑆, (2)

where 𝑓𝛼 indicates the particle distribution along each link 𝛼. 𝑒𝛼 is 
the velocity of a particle in 𝛼, 𝑡 is time, 𝛿𝑡 is the time step, 𝒓 is the 
cell position, 𝑆 is the source term, 𝑤𝛼 is the proportion of particles 
streaming in link 𝛼, and 𝜖 = 𝛥𝑡∕𝜏 where 𝜏 is the relaxation time. We 
more generally define 𝒓 using Cartesian coordinates, whose notation 
depends on the dimension of the vector space. For example, in a one-
dimensional space, we express 𝒓 = (𝑥), while in a two-dimensional 
space, we express 𝒓 = (𝑥, 𝑦). Fig.  1 shows how the particle distribution 
may be visualized along a grid of cells. Each time step represents 
particle movement into neighboring cells, as determined by the above 
equation.

To solve (2) in the one- and two-dimensional planes, we investigate 
three configurations of the spatial lattice model. For a D𝑛Q𝑚 config-
uration, we consider an 𝑛-dimensional lattice grid with 𝑚 = |𝛼| links, 
where each link is a direction in which particles are propagated. This 
paper considers advection–diffusion results for the D1Q2, D1Q3, and 
D2Q5 configurations.

2.3. Formulation for one-dimensional scheme

Initially, we devise a one-dimensional model for the D1Q2 configu-
ration. Two velocity vectors are considered such that 
𝑒1 = −𝑒2 = 𝛥𝑥∕𝛥𝑡 (3)

for corresponding distribution functions 𝑓1 and 𝑓2. The symmetric 
boundary condition of the LBM imposes this equality. Our model 
resolves around the local equilibrium distribution function [72], for-
mulated as 

𝑓 (eq)𝛼 (𝒓, 𝑡) = 𝑤𝛼𝜙(𝒓, 𝑡)

(

1 +
𝒆𝜶 ⋅ 𝒄
𝑐2𝑠

)

, (4)

where 𝜙(𝒓, 𝑡) corresponds to the lattice site at lattice position 𝒓 = (𝑥𝑖), 
𝒄 is the advection velocity vector, and 𝑐𝑠 is the speed of sound. We set 
the weights 𝑤1,2 = 0.5 and 𝑐𝑠 = 1, in accordance with the approach 
by Budinski [47]. Likewise, the D1Q3 configuration is considered with 
three velocity vectors, where 𝑒0 = 0 and 𝑒1 = −𝑒2 = 1. Let the speed of 
sound 𝑐 = 1∕

√

3 following Servan-Camas and Tsai [73].
𝑠

3 
Fig. 1. Illustration of a D2Q5 LBM lattice with a streaming particle and link weights 
𝑤𝛼 .

2.4. Formulation for two-dimensional scheme

We now consider the two-dimensional D2Q5 scheme. Budinski [48] 
shows that these equations are reduced to resemble the advection–
diffusion formulation, referencing his earlier work [47] in setting the 
parameters and governing formulas. We adapt this advection–diffusion 
formulation to a multiple-circuit method for advection and diffusion. 
This formulation is expressed as 
𝜕𝜙
𝜕𝑡

+ 𝑐
𝜕𝜙
𝜕𝑥

= 𝐷
𝜕2𝜙
𝜕𝑥2

, (5)

where advection is defined by 𝑐(𝜕𝜙∕𝜕𝑥) and diffusion is defined by 
𝐷(𝜕2𝜙∕𝜕𝑥2). Here, 𝑐 and 𝐷 are the advection and diffusion coefficients 
and 𝜙(𝑡, 𝑥) is a scalar concentration field.

The equilibrium distribution function is solved using (4), where 
𝒓 = (𝑥𝑖, 𝑦𝑖). Let 𝑐𝑠 = 1∕

√

3 [73] and the weights be defined such that 
𝑤0 = 2∕6 and 𝑤2,3,4 = 1∕6 respective to the directions illustrated in Fig. 
1 [74].

Following standard practice [40], the relaxation time 𝜏 relates to 
the diffusion constant 𝐷 with 
𝐷 = 𝑐2𝑠

(

𝜏 − 𝛥𝑡
2

)

. (6)

Herein we use 𝐷 = 1∕6 and 𝜏 = 𝛥𝑡. Recall we have set 𝑐𝑠 = 1∕
√

3. This 
gives 𝜀 = 𝜏∕𝛥𝑡 = 1 and 
𝑓𝛼(𝒓 + 𝒆𝜶𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓 (eq)𝛼 (7)

simplifies as 

𝑓𝛼(𝒓 + 𝒆𝜶𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑤𝛼𝜙(𝒓, 𝑡)

(

1 +
𝒆𝜶 ⋅ 𝒄
𝑐2𝑠

)

, (8)

which includes the collision (4) and the streaming steps (7). The 
concentration field is thus 

𝜙(𝒓, 𝑡) =
𝑁−1
∑

𝛼=0
𝑓𝛼(𝒓, 𝑡), (9)

summing the particle distributions across all link directions 𝛼.

3. Quantum lattice Boltzmann method

3.1. Quantum lattice Boltzmann method for the advection–diffusion equa-
tion

We now discuss the premise of the body of work devised by Budinski 
[48]. Consider, first, the advection–diffusion equations. The quantum 
circuit performs the collision operator, followed by the streaming of 
particles and recalculation of macroscopic variables. Boundary condi-
tions are applied at the end of each time step. No special care is needed 
when boundary conditions are periodic; the left and right shift gates 𝐿
and 𝑅 automatically propagate boundary conditions to the designated 
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Fig. 2. QLBM circuit for an advection–diffusion time step as devised by Budinski [47]. The collision operator 𝐴 = (𝐶1 +𝐶2)∕2, and shift operators 𝑆1,2 ∈ {𝐿,𝑅} propagate particles 
in each link direction 𝛼. In panel (c), a Hadamard gate [77] is applied to the qubits in register 𝑑.
lattice site for each link 𝛼. Fig.  2 illustrates how the quantum circuit’s 
qubits are organized into 4 registers, or groupings of qubits, to solve 
the advection–diffusion equation using a D2Q5 scheme. Registers 𝑟0
and 𝑟1 contain 𝑁qubit = log2(𝑀) qubits, where 𝑀 is the number of 
lattice sites in each dimension. Register 𝑑 has ⌈log2(𝑚)⌉ qubits, where 
𝑚 is the number of LBM links 𝛼. Register 𝑎 holds a single ancilla qubit 
necessary for applying the non-unitary collision operator using linear 
combination of unitaries (LCU).

3.1.1. Encoding input
For the current study, the amplitude encoding technique described 

in the work of Shende et al. [75] is employed. Amplitude encoding is 
part of the Qiskit toolkit [76], although it is also a generic encoding 
algorithm with an expensive gate count. We further elaborate on this 
in Section 6.

At the start of each time step, we are given a distribution 𝜙(𝒓, 𝑡)
We define 𝜙(𝛼, 𝒓) to be the value of 𝜙 at time 𝑡 and position 𝒓 at link 
direction 𝛼. Given a discretized concentration
𝜙(𝛼, 𝒓) = [𝜙(0, 0), 𝜙(0, 1), 𝜙(0, 2),… , (10)
𝜙(4,𝑀 − 2), 𝜙(4,𝑀 − 1), 𝜙(4,𝑀)],

the initial statevector |𝜓0⟩ is 

|𝜓0⟩ = |0⟩𝑎 ⊗
1

||𝜙||

2𝑀−1
∑

𝑖=0
𝜙(𝛼, 𝒓)|𝑖⟩. (11)

This formulation normalizes 𝜙(𝛼, 𝒓), and the initial qubit states follow 
from amplitude encoding. In Fig.  2, register 𝑟0 stores the data at each 
link direction 𝛼. This data can be retrieved by specifying the link 𝛼 in 
register 𝑑.

Applying the collision operator to the initial statevector |𝜓0⟩ is 
equivalent to multiplying the 𝜙(𝛼, 𝒓) with weight coefficients 

𝑤𝛼

(

1 +
𝒆𝜶 ⋅ 𝒄
𝑐2𝑠

)

, (12)

which follow from (4). This strategy is discussed further in the next 
subsection.

3.1.2. Collision operator
The collision step (Fig.  2(a)) computes the equilibrium distribution 

function 𝑓 (eq)𝑎 , which requires computing the proportion of the distri-
bution 𝜙 in each link 𝛼. The collision operator entails applying the 
coefficient matrix 𝐴 to the current statevector |𝜓0⟩.

The coefficient matrix 𝐴 is not unitary, so it cannot be directly 
translated into a quantum gate. To mitigate this, an important strategy, 
devised by Childs and Wiebe [78], is employed by Budinski [48]. 
Suppose we split 𝐴 into a linear combination of unitary matrices, 𝐶1
and 𝐶2, related to the original matrix as 

𝐶 = 𝐴 ± 𝑖
√

𝐼 − 𝐴2. (13)
1,2

4 
Fig. 3. A block encoding of 𝐵 = (𝑉 +𝑊 )∕2. Here, 𝑉  and 𝑊  are unitary matrices.

As 𝐴 = (𝐶1 + 𝐶2)∕2, an operation with 𝐴 is computed via block 
encoding [79,80], where 𝐶1 and 𝐶2 are unitary, but 𝐴 is, in general, 
not.

The circuit in Fig.  3 evolves an input statevector |𝜓⟩ according to 
the large unitary 

𝑈 = 1
2

[

𝑉 +𝑊 𝑉 −𝑊
𝑉 −𝑊 𝑉 +𝑊

]

, (14)

where 𝐵 = (𝑉 +𝑊 )∕2. Thus, 𝐵 is a subblock of the block matrix 𝑈 .
Post-selection selects quantum states for specific measurement out-

comes. Here, we use post-selection to measure the result after the 
collision operator for a 0 ancilla (after the block encoding).

The collision matrix is 

𝐴 =
[

𝑘1𝐼𝑚 0
0 𝑘2𝐼𝑚

]

, where 𝑘𝛼 = 𝑤𝛼

(

1 +
𝒆𝜶 ⋅ 𝒄
𝑐2𝑠

)

(15)

are the link coefficients described by (12). Panel (a) of Fig.  2 uses a 
linear combination of unitaries to apply matrix 𝐴 to the input. The 
Hadamard gates are used in the block encoding process, along with 
𝐶1 and 𝐶2 operations, which are derived from the unitary matrices in 
(13). The coefficients representing the proportion of particles in each 
link 𝛼 are 𝑘1 and 𝑘2. The collision matrices are 

𝐶1,2 =
[

exp(±𝑖 arccos (𝑘1))𝐼𝑚 0
0 exp(±𝑖 arccos (𝑘2))𝐼𝑚

]

. (16)

The collision operator 𝐴 transforms statevector |𝜓0⟩ via a linear 
combination of 𝐶1 and 𝐶2, but requires an ancilla qubit 𝑎, which stores 
orthogonal data (𝐶1 − 𝐶2)∕2 when the ancilla is |1⟩.

The orthogonal data was ignored through post-selection. The result 
of this linear combination is 
|𝜓1⟩ =

1
||𝜙||

∑

𝑖
𝑎𝑖,𝑖𝜙𝑖,𝑖|𝑖⟩, (17)

which encodes the post-collision values for each link direction 𝛼, for 
which the ancilla is |0⟩.

The diagonal nature of the collision matrix 𝐴 makes further opti-
mizations of interest. The 𝐶1 and 𝐶2 collision operators derived from 
this 𝐴 are diagonal and can be expressed in terms of pure rotation gates 
and CX (or two-qubit gate) operations [81]. There exist approaches 
to optimize the implementation of diagonal unitary gates [82,83], 
although some rely on an efficient black-box oracle to compute map-
pings. The difficulty within QLBM comes from applying 𝐶  and 𝐶  as 
1 2
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controlled unitary gates, which introduce more costly CX gates to the 
circuit decomposition after transpilation. Thus, work has been done to 
improve the general collision term. Xu et al. [67] design a collision 
operator that removes the role of the ancilla register using 𝑅𝑦 and 
controlled-𝑅𝑦 gates, achieving a linear reduction on the magnitude of 
𝑂(log2(𝑀)) in CX gate count, given an 𝑀×𝑀 lattice. This improvement, 
among others, to the collision term could further reduce the resource 
usage and computational runtime of the proposed stream function and 
vorticity functions.

3.2. Particle streaming

The streaming step propagates particles in each link 𝛼 to the neigh-
boring site. Fig.  5 shows the shift operators 𝑅 and 𝐿, which are 
controlled on registers 𝑑 with ⌈log2(𝑚)⌉ qubits and stream particles to 
neighboring lattice sites. The shift matrices are permutation matrices 
as 

𝑅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ 0 1
1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and 𝐿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0
0 0 ⋯ 0 1
1 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦𝑁qubit×𝑁qubit

,

(18)

and are both unitary matrices.
The resulting statevector |𝜓2⟩ has a distribution shifted to a neigh-

boring lattice site, determined by its link value 𝛼𝑖. Fig.  4 shows how 
the right and left shift gates 𝑅 and 𝐿 are controlled on the link qubits 
𝑑 to act on the part of the statevector for distribution 𝛼.

Fig.  5 shows the up and down operators used in a 2D lattice, which 
are implemented through the 𝐿 and 𝑅 operators applied via 𝑟1. The 
shift algorithm presented here is a canonical version originating in 
quantum random walk [84], which is composed of cascading multi-
controlled 𝑋 gates. This quantum subroutine is used to propagate the 
weights only in the streaming function, as illustrated in Figs.  5 and 6. 
Many recent studies on QLBM [49,67] also utilize this canonical shift 
algorithm due to its simplicity and universality.

Proposals for more efficient shift algorithms aim to achieve a si-
multaneous shift towards multiple lattice directions. Compared to the 
canonical shift algorithm, a parallel shift algorithm introduced in [64] 
achieves state shift in both 1D left and right lattice directions by divid-
ing the quantum state into even and odd basis components. Although 
both of them exhibit a linear scaling for the 2-qubit CX gate counts 
𝑂(𝑁qubit ), the parallel version largely improves the prefactor of this 
linear gate complexity by a factor of ∼ 3. This strategy represents 
a meaningful, though constant, improvement, particularly for large 
problem sizes. When considering the entire circuit of streaming step, 
the shift algorithm is controlled by ⌈log2(𝑚)⌉ ancilla qubits and this 
eventually leads to (𝑁2

qubit) CX gates in total, where 𝑁qubit is the total 
number of qubits in the circuit [67]. More recently, Tiwari et al. [69] 
proposed to use the one-hot encoding with 𝑚 − 1 ancilla qubits for the 
streaming step. By trading off between ancilla qubits and gate counts, 
this encoding would lead to a significant reduction of CX gates. These 
improvements are specific to the streaming step and can be additive to 
this work, but do not impact our conclusions regarding the separation 
of streaming and vorticity.

3.3. Macroscopic variable retrieval

We retrieve the distribution 𝜙(𝒓, 𝑡) by summing 𝑓 (eq)
𝛼  over the link 

directions 𝛼. Fig.  2 shows how this is accomplished by applying 
Hadamard gates to each of the qubits in link registers 𝑑, as shown 
in Fig.  2(c) [77]. A Hadamard gate 𝐻 applied to a statevector |𝜓⟩, 
resulting in 

𝐻|𝜓⟩ = 1
√

[

1 1
][

𝜓𝑎
]

= 1
√

[

𝜓𝑎 + 𝜓𝑏
]

=
𝜓𝑎 + 𝜓𝑏
√

|0⟩+
𝜓𝑎 − 𝜓𝑏
√

|1⟩. (19)

2 1 −1 𝜓𝑏 2 𝜓𝑎 − 𝜓𝑏 2 2

5 
Fig. 4. Circuit decomposition for (a) left shift and (b) right shift operators.

Fig. 5. Streaming for a two-dimensional lattice grid. The streaming step uses right and 
left shift operators to shift distributions in their respective link directions 𝛼1 and 𝛼2
by controlling the gates on qubits in each link register 𝑑. These gates are applied to 
qubits in 𝑟0 for left (right) shifts and qubits in 𝑟1 for up(down) shifts.

When the Hadamard gate is applied to a link qubit in 𝑑, it stores the 
sum of the two amplitudes as the |0⟩ amplitude and the difference as 
the |1⟩ amplitude. Thus, the sum can be post-selected by ignoring |1⟩
measurements. With this post-selection, the Hadamard gates sum the 
distributions but introduce a factor of 1∕

√

2 per gate. This pre-factor is 
post-processed out of the computation by multiplication of a factor of 
√

2
log2 𝑚 where 𝑚 = |𝛼| is the number of link distributions. At each time 

step, we retrieve the circuit result via state tomography, which must be 
used to extract the first 𝑀 lattice site elements.

4. Quantum lattice Boltzmann method for the Navier–Stokes equa-
tions

4.1. Stream function–vorticity formulation

The incompressible 2D Navier–Stokes equations in Cartesian coor-
dinates are
𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

= −
𝜕𝑝
𝜕𝑥

+ 1
Re

(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

, (20)

𝜕𝑣
𝜕𝑡

+ 𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

= −
𝜕𝑝
𝜕𝑦

+ 1
Re

(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

)

, (21)

where 𝑢 and 𝑣 are the velocity components in the 𝑥 and 𝑦 coordinate 
directions, 𝑝 is the pressure, and Re is the Reynolds number, which is 
the ratio of inertial to viscous effects [85].
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Taking the curl of the above Navier–Stokes equations recasts them 
in the so-called vorticity–stream function formulation, removing the 
pressure term 𝑝 and yielding

𝜕2𝜓
𝜕𝑥2

+
𝜕2𝜓
𝜕𝑦2

= −𝜔, (22)

𝜕𝜔
𝜕𝑡

+ 𝑢 𝜕𝜔
𝜕𝑥

+ 𝑣 𝜕𝜔
𝜕𝑦

= 1
Re

(

𝜕2𝜔
𝜕𝑥2

+ 𝜕2𝜔
𝜕𝑦2

)

. (23)

In this formulation, (22) and (23) use vorticity 𝜔 and stream func-
tion 𝜓 instead of directional speeds 𝑢 and 𝑣. The velocity vector is thus 
𝒖 = {𝑢, 𝑣}. The stream function relates to the directional velocities as 
𝜕𝜓
𝜕𝑥

= 𝑢 and 𝜕𝜓
𝜕𝑦

= −𝑣. (24)

Thus, (22) is a Poisson equation in stream function 𝜓 and (23) is an 
advection–diffusion equation in vorticity 𝜔.

4.1.1. Lattice-based representation
With the stream function–vorticity formulation, the collision,

streaming, and macro lattice stages follow as

𝑓 (eq)𝛼 (𝒓, 𝑡) = 𝑤𝛼𝜔(𝒓, 𝑡)

(

1 +
𝒆𝛼 ⋅ 𝒖
𝑐2𝑠

)

, (25)

𝑓𝛼(𝒓 + 𝒆𝛼𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓 (eq)𝛼 , (26)

𝜔(𝒓, 𝑡) =
∑

𝛼
𝑓𝛼(𝒓, 𝑡). (27)

These stages, buttressed via the circuits of Section 3.1, enable the 
vorticity 𝜔 computation.

The equilibrium distribution function for the Poisson equation 
(∇2𝜓 = −𝜔) is 𝑔(eq)𝛼 (𝒓, 𝑡) = 𝑤𝛼𝜓(𝒓, 𝑡). The streaming and macro steps 
match those of Sections 3.2 and 3.3, but the source term 𝑆 = −𝜔 is 
added during the collision step (a). Thus, the relaxation operator is 
𝑔𝛼(𝒓 + 𝒆𝛼𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑔(eq)𝛼 + 𝛥𝑤𝛼𝑆, (28)

and macro retrieval equation 
𝜓(𝒓, 𝑡) =

∑

𝛼
𝑔𝛼(𝒓, 𝑡). (29)

4.1.2. Boundary conditions
The validation problem for the proposed method is a 2D lid-driven 

cavity flow. The spatial domain is 𝛺 ∈ 𝑥, 𝑦 with lengths 𝐿𝑥 and 𝐿𝑦 and 
boundary 𝜕𝛺. The stream function 𝜓 is constant along the boundaries, 
with 𝜓 = 0 used here. For the lattice Boltzmann method, 

𝜓 =
𝑁links−1
∑

𝛼=0
𝑔(eq)𝛼 = 𝑔0 + 𝑔1 + 𝑔2 + 𝑔3 + 𝑔4, so, 𝑔𝜕𝛺 = −

∑

𝛼|𝛼≠𝜕𝛺
𝑔𝛼 . (30)

Defining the vorticity expression (22) in terms of the stream func-
tion and expanding it in its Taylor series gives 

𝜔𝑖,𝑁qubit
= −2

(

𝜓
𝛥𝑦2

+ 𝑈
𝛥𝑦

)

, (31)

along the boundaries 𝜕𝛺, where 𝑈 is wall-parallel velocity of the top 
wall. For a stationary wall, 𝑈 = 0. The wall equilibrium distribution in 
the direction of the wall is 

𝑔(𝑥, 𝑦)𝜕𝛺 = −
∑

𝛼|𝛼≠𝜕𝛺
𝑔𝛼 − 2

(

−𝜓
𝛥𝑦2

+ 𝑈
𝛥𝑦

)

. (32)

To implement Eq.  (32), the matrix 

𝐵 =
⎡

⎢

⎢

⎣

0 ⋯ 0
⋮ 𝐼𝑁qubit−2 ⋮

0 ⋯ 0

⎤

⎥

⎥

⎦

, (33)

is applied to the statevector |𝜙⟩, where 𝐵 is of size 𝑁qubit × 𝑁qubit , 
𝑁qubit = log2(𝑀) in each dimension, and 𝐼𝑛 denotes the size 𝑛 identity 
matrix. Setting 𝑔𝜕𝛺 = 0, while retaining other distribution values, 
enforces the boundary condition for the stream function circuit |𝜓b.c.⟩ =
|0⟩⊗𝑁qubit .
6 
The vorticity circuit boundary conditions are applied via a linear 
combination of 𝐵 to account for its nonlinear nature. This linear unitary 
combination is 
𝐷1,2 = 𝐵 ± 𝑖

√

𝐼𝑁qubit
− 𝐵2, (34)

following Section 3.1.2.

4.2. Two-circuit model

The deviation from Budinski [48]’s original algorithm lies in the 
two-circuit approach, which defines distinct circuits for computing the 
stream function and vorticity. To devise this, we adopt the advection–
diffusion circuits, as discussed in [47], and apply different bounds 
specific to the lid-driven cavity case. We discuss each circuit in more 
detail below.

4.2.1. Vorticity circuit
The vorticity circuit computes the vorticity 𝜔 for the current time 

step. The vorticity circuit in Fig.  6 and advection–diffusion circuit in 
Fig.  2 are nearly identical, save for the boundary conditions. This 
matching occurs because the vorticity equation in (23) follows the same 
form as the diffusion equation. The Navier–Stokes algorithm’s vorticity 
circuit is the same as the advection–diffusion one if the boundary 
conditions are computed classically.

If boundary conditions are included, an extra qubit 𝑏 stores them. 
Boundary conditions require additional computation, as enforcing such 
conditions is not a unitary operation. For this, the linear combination 
of unitaries is used [86], described further in Section 3.1.2. The input 
to this circuit for the no-boundary version is the vorticity from the 
previous time step, 𝜔𝑡−1. When using boundary conditions, the circuit 
input includes pre-computed boundary conditions in the boundary 
qubit 𝑏, computed following the descriptions in Section 4.1.2.

4.2.2. Stream function circuit
The stream function circuit is the other quantum circuit used in 

this two-circuit model. The D2Q5 stream function circuit shown in 
Fig.  7 is referred to for additional context. This circuit is similar to 
the advection–diffusion circuit with classical boundary conditions but 
includes an additional source term. Fig.  7 shows the principle difference 
between these circuits; the additional qubit 𝑠 stores the source term, 
𝑆 = −𝜔.

The 𝐶1 and 𝐶2 gates also operate on the source term, and the 
Hadamard gate on qubit 𝑠 adds this source to the stream function’s 
equilibrium distribution function 𝑔(eq)𝛼 . The same qubit-addition process 
from Section 4.2.1 applies. Boundary conditions require an additional 
𝑏 qubit store and a boundary gate 𝐵, which is not unitary and again 
is implemented via a linear combination of matrices following (14). 
The previous stream function, 𝜓𝑡−1, and source term, 𝑆 = −𝜔𝑡−1, serve 
as the input to the stream function circuit. The boundary conditions 
are computed according to Section 4.1.2 for our quantum boundary 
condition variant.

5. Simulations and results

The QLBM algorithm of Budinski [48] uses a single circuit to solve 
the Navier–Stokes equations. This work builds upon corresponding re-
search on advection–diffusion algorithms [47]. QLBM-frugal separates 
the computational process into distinct stream function and vorticity 
circuits. We verify the algorithm against that of Budinski [47]. We 
consider two cases for the advection–diffusion algorithm, the D1Q2 and 
D1Q3 lattice schemes, and validate the implementation accuracy before 
separating the stream function and vorticity circuits. We also consider a 
lid-driven cavity problem to verify the two-circuit approach. With this, 
we can compare how the resource use of the algorithm scales under 
increasing lattice site count against the work of Budinski [47].
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Fig. 6. The original D2Q5 vorticity circuit proposed by Budinski [47], modified from the generalized circuit in Fig.  2 for boundary conditions. The modified circuit includes an 
additional qubit, 𝑏, to store the boundary conditions and perform computations. We propose an algorithm that splits this circuit into two distinct parts.
Fig. 7. The collision portion of the stream function circuit. An additional qubit 𝑠 stores 
the source term, and an additional Hadamard gate on qubit 𝑠 after the block encoding 
adds the source term to the link distributions 𝛼𝑖 before streaming.

5.1. Advection–diffusion equation

We apply the QLBM circuit to the advection–diffusion equation to 
obtain results for two example configurations. We verify these results 
against the expected outcomes returned by the classical LBM. In the 1D 
case, D1Q2 and D1Q3 lattice schemes simulate a dense concentration 
of 𝜌 = 0.2 at source 𝑥𝑖 = 10, undergoing advection and diffusion 
with uniform advection velocity of 𝑐 = 1∕5 and diffusion coefficient 
𝐷 = 1∕6. The validation problem for the 2D case follows a diffusing 
concentration 𝜌 = 0.3 at source (𝑥𝑖, 𝑦𝑗 ) = (4, 4) and 0.1 elsewhere, solved 
via a D2Q5 scheme.

Fig.  8 shows the results of statevector simulations over 50
timesteps. A checkboard pattern arises in the D1Q2 case because the 
distribution moves wholly into neighboring areas, resulting in half of 
the lattice sites having zero particles. The algorithmic deficiency is 
remedied via the D1Q3 lattice scheme by setting the weight of vector 
𝑤0, specified in Fig.  1, to 2∕3. Fig.  8(a) shows that D1Q3 resolves the 
checkerboarding problem of D1Q2.

Fig.  8(b) shows the results of the 2D test problem solved with 
the D2Q5 scheme after 20 timesteps. There exists an initial source at 
(𝑥𝑖 = 4, 𝑦𝑗 = 4), with an advection velocity in the positive 𝑥 and 
𝑦 directions. The source advects in the direction of the velocity and 
diffuses outwards. The solution behaves as expected and agrees with 
classical LBM results.

The results are further validated via finite sampling. Fig.  9 displays 
the results of finite sampling with various shot sample sizes 𝑁samp.. We 
verify the behavior of the algorithm by computing the state fidelity 
of results obtained via finite sampling to the statevector of the ideal 
solution. The quantum state fidelity, 𝐹 (𝜌), of a (probabilistic) mixed 
𝜓

7 
quantum state 𝜌 with respect to a pure quantum state 𝜓 is expressed as
𝐹𝜓 (𝜌) = ⟨𝜓|𝜌|𝜓⟩ = Tr(𝑝|𝜓⟩⟨𝜓|). (35)

Here, 𝜓 is the expected solution obtained via the QLBM algorithm, 
and 𝜌 is the probabilistic outcome obtained via finite sampling methods. 
From the equation defined in (35), we conclude that if 𝜌 perfectly 
resembles the ideal solution, then we have 𝐹𝜓 (𝜌) = 1. The fidelity is 
expected to be expressed as a function of the number of shots 𝑁samp.
used in the experiment, where in accordance to Yu et al. [87]

𝑁samp. ∝
1

1 − 𝐹𝜓 (𝜌)
(36)

Fig.  10 shows the results of this verification. The slope of the fit line in 
Fig.  10 is 1.01, a 1% difference from the expected proportion.

5.2. Navier–Stokes equations

Fig.  11 shows isocontours of the stream function for a lid-driven 
cavity problem. The problem serves to verify the two-circuit QLBM 
against a classical implementation of the lattice Boltzmann method.

To define relative errors between the quantum and classical lattice 
algorithms, we denote 

𝜓𝑖,𝑗 = 𝜓(𝑥𝑖 ,𝑦𝑗 ) and 𝜔𝑖,𝑗 = 𝜔(𝑥𝑖 ,𝑦𝑗 ), (37)

where 𝑥𝑖 = 𝑖𝛥𝑥 and 𝑦𝑗 = 𝑗𝛥𝑦. The local 𝐿1 relative error between the 
classical and two-circuit QLBM Navier–Stokes solver is, thus, 

𝜀𝜓 ;𝑖,𝑗 =
𝜓classic.𝑖,𝑗 − 𝜓quant.𝑖,𝑗

𝜓classic.𝑖,𝑗

and 𝜀𝜔;𝑖,𝑗 =
𝜔classic.𝑖,𝑗 − 𝜔quant.𝑖,𝑗

𝜔classic.𝑖,𝑗

. (38)

The relative errors are shown for the cavity problem in Fig.  12. 
Fig.  12 shows that the two-circuit QLBM agrees with the classical LBM 
when simulated with the statevector simulator in Qiskit’s SDK [76]. 
The statevector simulator perfects exact tomography but is generally 
limited to small simulations due to exponentially increasing memory 
requirements with qubit numbers.

5.2.1. Quantum resource estimation and improvement
Implementing the two-circuit method for solving the Navier–Stokes 

equations using quantum lattice-based algorithms shows quantum re-
source advantages over the single-circuit method. The advantages are 
achieved in two areas: two-qubit gate count and runtime. Two-qubit 
gates like CX are slower and more error-prone than single-qubit gates, 
which has prompted bodies of work to reduce counts of these gates 
in quantum algorithms [88]. The projected runtime is calculated by 
summing the implementation time for each gate in the circuit. As such, 
the runtime is approximately proportional to the circuit depth.



M. Lee et al. Future Generation Computer Systems 174 (2026) 107975 
Fig. 8. Quantum LBM (a) D1Q2, D1Q3, and (b) D2Q5 results for the advection–diffusion equation. The initial condition in (a) is a point source of 𝜌 = 0.2 at 𝑥 = 10 and 𝜌 = 0.1
otherwise. The initial condition in (b) is a point source of 𝜌 = 0.3 at (𝑥, 𝑦) = (4, 4) and 𝜌 = 0.1 elsewhere.
Fig. 9. The results of the D1Q3 algorithm at iteration 50 are obtained via finite sampling of the quantum circuit at various sample sizes 𝑁samp..
Fig. 10. Verification via linear convergence with shot number for the advection–
diffusion D1Q3 algorithm.

We show the reduction in gate counts by converting the circuit 
into a series of equivalent one- and two-qubit gates via the Qiskit 
transpiler. This procedure is conducted on a 64 × 64 lattice, with no 
prior optimizations or conversions to backend-specific gate sets. Table 
1 shows that pre-computing the boundary conditions using classical 
methods reduces the gate count by at least 35%. By running the QLBM-
frugal stream function and vorticity circuits concurrently, circuit depth 
8 
Fig. 11. A 2D lid-driven cavity flow. Steady-state stream function isocontours are 
shown as labeled. The initial conditions are 𝜓 = 0, 𝑤 = 0, and 𝑈 = 1, done over 
80 timesteps.

is reduced to the maximum depth of its constituent circuits. Table  1 
shows that a 33% reduction in circuit depth when compared against 
the single-circuit algorithm by Budinski [48].
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Fig. 12. Relative error between the classical LBM and two-circuit quantum methods for (a) vorticity and (b) stream function.
Table 1
Quantum resource estimation (all counts are in units of 104) for a D2Q5 
algorithm with lattice size 64 × 64.
 CX Gates Circuit depth 
 Single-circuit QLBM 25 58  
 Stream function 4.3 9.4  
 Vorticity 12 39  
 Stream function without boundaries 4.2 15  

We similarly transpile the results relative to a select backend. Dur-
ing compilation, we set the optimization level to be 3, as defined 
in Javadi-Abhari et al. [76] documentation. The optimization levels in 
Qiskit range from 0 to 3, corresponding to more aggressive optimiza-
tion. The most aggressive optimizations include noise-adaptive qubit 
mapping and gate cancellation. This compilation reduces the circuit 
to one with fewer gates yet retains the same functionality. Still, such 
optimization only modestly reduces gate counts in the cases discussed 
herein.

The IBM Brisbane device is the backend of the transpilation process. 
Brisbane supports 127 qubits and is sufficient for resource estimation. 
The prior case of Table  1 transpiled the circuit into a generalized 
set of gates. With the Brisbane backend, the transpiler identifies the 
device-specific gate set, which includes single-qubit X, RZ, and SX 
gates, as well as the two-qubit Echoed Cross-Resonance (ECR) gate. ECR 
gates and a series of single-qubit rotations are applied to implement a 
CX gate. Thus, reducing the ECR gate count is commensurate with a 
reduction in the CX count. The transpilation, optimization, and resource 
estimation processes are both performed on a local classical device 
before simulation.

Table  2 illustrates the resource estimation for a 16 × 16 lattice size 
case. All algorithms shown in the table, including the QLBM algorithm 
by Budinski [48], are optimized via the Qiskit transpiler before resource 
estimation. Table  2 shows that, after optimization, we see a 33% 
reduction in ECR gates. Of the total ECR gates applied, Table  2 shows 
that the boundary conditions make up 44% of the ECR gate counts 
in the QLBM-frugal algorithm. It remains to be shown whether the 
reduction in two-qubit gates offsets the cost of computing these bounds 
on a classical device. Doing so involves accounting for the lattice size, 
hardware capabilities, and error rates of the gates. By computing the 
results of the stream function and vorticity circuits concurrently, the 
circuit depth is reduced by 41%.

We now consider how the resource estimation changes with respect 
to the lattice size. First, the growth in ECR gate counts is observed in 
Fig.  13 as the algorithm scales from a 2 × 2 to 32 × 32 lattice size. 
9 
Table 2
Quantum resource estimation, in units of 104, for a D2Q5 algorithm with 
lattice size 16 × 16 following transpiling with optimization level 3 on 
the IBM Brisbane backend.
 ECR Gates Circuit depth 
 Single-circuit QLBM 43 135  
 Stream function 7.6 29  
 Vorticity 21 80  
 Stream function without boundaries 7.5 28  
 Vorticity function without boundaries 5.0 17  

Fig. 13. Comparison of costly two-qubit gate counts on the D2Q5 algorithm for the 
proposed two-circuit approach against Budinski [47]’s algorithm. Transpiled on the IBM 
Brisbane backend. The horizontal axis ‘‘Number of Lattice Sites’’ scales logarithmically.

Fig.  13 shows that the number of two-qubit gates required by Budin-
ski [48]’s QLBM algorithm increases more rapidly than that of the 
proposed QLBM-frugal algorithm. The number of ECR gates is on the 
order of one million, indicating a notable difference in cumulative error 
between the initial and proposed algorithms. We obtained a runtime 
estimate for each transpiled circuit corresponding to these lattice sizes 
via the Qiskit scheduler. These are calculated based on the execution 
time of the gates on the specified backend. These estimates do not 
account for the encoding and readout costs, which are discussed in 
Section 6.

Fig.  14 shows the runtime of the respective algorithms. The stream
function and vorticity circuits are presumed to run concurrently, in-
dicating that the QLBM algorithm’s runtime scales with the fastest-
growing circuit. Note that the runtime of all of the circuits considered 
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Fig. 14. Runtime estimation for the proposed D2Q5 QLBM-frugal algorithm without 
quantum bounds, compared against the QLBM algorithm proposed by Budinski [47]. 
The circuit is transpiled with optimization level 3 on the IBM Brisbane backend.

exceeds the coherence time of the IBM Brisbane hardware, as with most 
available quantum hardware at present. These coherence times are on 
the order of several hundred microseconds. Thus, results cannot be reli-
ably computed on a real device for even the smallest number of lattice 
sites. Furthermore, any classical simulations that attempt to replicate 
the error rates of available hardware will yield only noise. Nonetheless, 
Fig.  14 demonstrates that running QLBM-frugal in parallel achieves a 
reduction in runtime when compared to the work by Budinski [47].

6. Limitations of current work

6.1. Hardware limitations

Current quantum devices have high noise floors and low qubit 
counts. LBM problems are often large, requiring many qubits, and so 
are beyond the capabilities of current quantum devices. The results 
presented here are derived from quantum simulation. Concurrently ex-
ecuting the stream function and vorticity circuits doubles the number of 
required qubits if they are ‘‘parallelized’’ on the same quantum device. 
Instead, the quantum work can be distributed across multiple quantum 
processors; however, we limit the present work to a single-device 
analysis.

While the qubit count is doubled, the depth of each circuit is 
reduced from the initial algorithm proposed by Budinski [47]. This 
strategy reduces the overall runtime and two-qubit gate count. How-
ever, the estimated runtime exceeds the coherence time of available 
hardware by several orders of magnitude. The presented method still 
depends on quantum simulators, even for small problems.

6.2. Encoding and readout costs

The algorithm of Budinski [47] and the presented two-circuit ap-
proach begin with an arbitrary state. This approach assumes that the 
state has been encoded in the quantum RAM or an equivalent set 
of qubits. Unless the amplitudes are roughly uniform, the encoding 
process is costly. For some quantum algorithms, this could reduce 
the expected quantum advantage over their classical counterparts to a 
polynomial one [33]. In the Qiskit implementation of state preparation, 
the resource cost scales exponentially with respect to the number of 
qubits [89]. Thus, appreciating the impacts of encoding can inform the 
application of QLBM algorithms.

The final readout process depends on the final state of the solution. 
Quantum state tomography measures (or reads out) the state of the 
quantum device. One requires (3𝑁qubit ) measurements to determine 
the quantum state of a 2𝑁qubit -dimensional Hilbert space [90]. This 
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exponential readout cost can meaningfully impact the runtime and re-
quired resources. This cost motivates an implementation that bypasses 
exponential readout costs or admits a heuristic-equipped final state for 
tomography. More efficient quantum state tomography methods exist 
in special cases, and the topic remains an active research problem [90–
94].

7. Conclusion

This work presents improvements on the quantum lattice Boltzmann 
method for solving the two-dimensional Navier–Stokes equations. We 
present a QLBM algorithm that utilizes concurrent-circuit computation 
of the stream function and vorticity. These modifications introduce the 
possibility of solving the Navier–Stokes equations via parallelization 
or distributed computing. We first verified the solution returned by 
the proposed QLBM-frugal algorithm against classical LBM methods. 
We selected the lid-driven cavity problem for algorithm verification, 
implementing both QLBM and QLBM-frugal using Qiskit. The error 
between the results is negligible on ideal quantum devices, indicating 
the algorithm is practical on fault-tolerant devices.

Moreover, we demonstrate that QLBM-frugal achieves a reduction in 
the two-qubit gate count compared to the previous single-circuit imple-
mentation of an otherwise similar algorithm [48]. Quantum devices are 
bottlenecked, in part, by limitations due to errors and environmental 
interference. Reducing the number of two-qubit gates will improve the 
algorithm’s accuracy. We demonstrate a 33% reduction in the two-
qubit ECR gate count following optimization and transpilation on the 
IBM Brisbane device for the 16 × 16 lattice and a 35% reduction in 
CX gate count when the algorithm is transpiled relative to a general 
gate set on the larger 64 × 64 lattice, corresponding to a reduction in 
the total circuit depth. Concurrent computation of the stream function 
and vorticity circuits reduces the depth on the 16 × 16 lattice size case 
by 41%. This reduction is significant: even for small problems, nearly 
one million individual gates are required to implement the circuit on 
quantum hardware. This reduction eliminates approximately (105)
qubit rotations and gates from the computation for each iteration, 
thereby reducing the accumulated error associated with continued gate 
application. Future works should keep exploring more efficient parallel 
shift algorithms [64] to higher dimensions and further reduce the gate 
counts.

The reduction in ECR gates and depth extends to cases beyond 
the 16 × 16 lattice size. We show that the QLBM-frugal resource 
requirements for lattice sizes ranging from 2 × 2 to 32 × 32 grow at 
a slower rate than that of the QLBM algorithm. The expected number 
of qubits scales logarithmically with the lattice size, 𝑂(log𝑀), slower 
than the linear growth demonstrated in Yepez [44]. The runtime of 
the present work, QLBM-frugal, scales more slowly than the traditional 
QLBM case. While we are far from being capable of implementing such 
a large circuit on current NISQ hardware, the changes make the circuit 
more feasible and less prone to errors on an ideal device relative to its 
predecessors.

The encoding and readout costs remain a bottleneck for the al-
gorithm. The processes must be performed at each iteration to input 
the prior state of the system and extract the information following 
each computation. This process is costly, and its complexity scales 
exponentially with respect to the number of qubits. The current work 
does not address read-in or out costs, although a comprehensive QLBM 
strategy for NISQ devices requires attention to this aspect.
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Appendix A. List of abbreviations

 CFD computational fluid dynamics  
 HHL Harrow-Hassidim-Lloyd algorithm  
 LBM lattice Boltzmann method  
 LGA lattice gas automata  
 QLBM quantum lattice Boltzmann method  
 NISQ noisy intermediate-scale quantum  
 VQA variational quantum algorithm  
 CX controlled-X gate (two-qubit gate)  
 ECR echoed cross-resonance gate (two-qubit 

gate)
 

Appendix B. List of variables

 𝑐 advection coefficient  
 𝐷 diffusion coefficient  
 𝜙(𝑡, 𝑥) scalar concentration field  
 𝛼 link index  
 𝑓𝛼 particle distribution along 𝛼  
 𝑒𝛼 velocity of particle in 𝛼  
 𝑡 time  
 𝑟 cell position  
 𝑆 source term  
 𝑤𝛼 proportion of particles streaming in link 𝛼  
 𝜏 relaxation time  
 𝑛 dimension of lattice grid  
 𝑚 number of directions of particle 

propagation, or links, given by |𝛼|
 

 𝑓 𝑒𝑞𝛼 equilibrium distribution  
 𝑐 advection velocity vector  
 𝑐𝑠 speed of sound  
 𝐿 left shift quantum gate  
 𝑅 right shift quantum gate  
 𝑟1, 𝑟2 quantum registers with log2(𝑀) qubits  
 𝑀 number of lattice sites  
 𝑑 quantum register with ⌈log2(𝑚) qubits, 

corresponding to the links
 

 𝑎 quantum register with ancilla  
 𝐴 collision coefficient operator  
 𝐶1, 𝐶2 unitary collision operators  
 𝑁qubit total number qubits  
 𝐻 Hadamard gate  
 𝜔 vorticity  
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 𝜓 stream function  
 𝑥, 𝑦 Cartesian coordinate directions  
 𝑔(𝑒𝑞)𝛼 equilibrium distribution function for the 

Poisson equation in link 𝛼
 

 𝑔𝛼 particle distribution function for the Poisson 
equation in link 𝛼

 

 𝜔 spatial domain in 𝑥, 𝑦 space  
 𝐿𝑥 x-length of spatial domain 𝜔  
 𝐿𝑦 y-length of spatial domain 𝜔  
 𝑈 top lid value, i.e. boundary condition  
 𝜌 concentration at given site  
 𝑁samp. number sample sizes  
 𝐹𝜓 quantum state fidelity  

Data availability

GitHub link is included in the manuscript.
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