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Reynolds-averaged Navier–Stokes (RANS) closure operators are generally nonlocal and
anisotropic for many flows, including wall-bounded turbulence. The macroscopic forcing
method (MFM) and Green’s function-based approaches examine these effects using forced
direct numerical simulations. For these approaches, the number of simulations required
to compute the nonlocal and anisotropic eddy viscosity is equal to the number of degrees
of freedom in the averaged space. We reduce the computational cost by introducing an
adjoint-based formulation of MFM to obtain the nonlocal and anisotropic eddy viscosity
at any Reynolds stress location using a single simulation. We then quantify the streamwise
and wall-normal nonlocal eddy viscosity at near-wall locations in turbulent channel flow
at Reτ = 180. We demonstrate that the upstream nonlocality is not fully described by
Lagrangian transport. We also quantify the significant differences in the upstream non-
locality between various components of the eddy viscosity tensor. Our results can be used
to guide closure modeling, including the lengthscales and timescales used in Reynolds
stress models.

DOI: 10.1103/PhysRevFluids.9.094606

I. INTRODUCTION

Reynolds-averaged Navier–Stokes (RANS) models are widely used to simulate turbulent flows
where direct numerical simulation (DNS) of the governing equations may be computationally cost-
prohibitive. The flow variables are Reynolds decomposed into mean and fluctuating components,
and the RANS equations govern the mean fields [1]. However, an unclosed term involves the product
of velocity fluctuations, commonly known as the Reynolds stress tensor. Further attempts to derive
an exact evolution equation for the Reynolds stresses result in more unclosed terms, and hence, the
Reynolds stresses are typically modeled [2–4].

Recent works by Hamba [5] and Park and Mani [6] have computed exact closure operators
for Reynolds stresses. These closure operators can further be written in terms of generalized eddy
viscosities that are nonlocal in space and time and anisotropic [5]. The closure operators are exact
in that substituting these operators back into the RANS equations results in DNS mean quantities.
Naturally, the operators are problem-dependent, but they can be used to inform current RANS
models of deficiencies in their eddy viscosity approximations and regions of sensitivity to the mean
velocity gradient.

*Contact author: jeliu@stanford.edu

2469-990X/2024/9(9)/094606(31) 094606-1 ©2024 American Physical Society

https://orcid.org/0009-0006-3798-2839
https://orcid.org/0000-0002-4891-0172
https://orcid.org/0000-0003-1750-7265
https://orcid.org/0000-0002-1979-7748
https://ror.org/00f54p054
https://ror.org/01zkghx44
https://ror.org/01zkghx44
https://ror.org/00za53h95
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.9.094606&domain=pdf&date_stamp=2024-09-20
https://doi.org/10.1103/PhysRevFluids.9.094606


JESSIE LIU et al.

Kraichnan [7] derived an exact nonlocal and anisotropic expression for the Reynolds stress tensor
using a Green’s function. Hamba [5] modified the expression to be feasible for numerical imple-
mentation. Hamba [5] used the Green’s function solution to a linearized formulation of the velocity
fluctuation equation, where the mean velocity gradient is treated as the source and the velocity
fluctuation is treated as the response. The generalized nonlocal and anisotropic eddy viscosity is
then formulated using Green’s functions and velocity fluctuations. Because this approach needs the
Green’s function solution at each location in the averaged space, using a separate simulation for each
location, computing the generalized eddy viscosity requires as many DNSs as degrees of freedom
in the averaged space. Mani and Park [8] developed the macroscopic forcing method (MFM), a
linear-algebra-based method for numerically obtaining closure operators. In MFM, one examines
the closure operator by applying an appropriate forcing (not necessarily a Dirac δ function) to
the governing equations and measures the averaged response. While MFM can obtain the exact
generalized eddy viscosity when used as a brute-force approach similar to Hamba’s approach [5],
MFM can also obtain moments of the eddy viscosity using one simulation per desired moment.
Liu et al. [9] showed how to use the limited information from a few low-order moments to model
the eddy viscosity. The resulting eddy viscosity is nonlocal and matches the measured low-order
moments, while the shape of its kernel approximately resembles the true kernel.

For many applications, the exact eddy viscosity may be desired only within subregions of the do-
main where RANS models are particularly inaccurate, such as in regions of flow separation [10–12].
The generalized eddy viscosity at such locations can inform RANS models of the sensitivity of
the Reynolds stresses at those locations to the mean velocity gradient at all locations. However,
brute-force approaches [5,8] are cost-prohibitive and compute the generalized eddy viscosity for
the entire domain, entailing as many simulations as degrees of freedom in the averaged space.

We herein develop an adjoint-based method to compute the generalized eddy viscosity at a
specific physical location using one simulation rather than an expensive brute-force approach.
We then use the adjoint-based method to quantify the two-dimensional (2D) streamwise and
wall-normal nonlocal eddy viscosity in turbulent channel flow at near-wall locations. Due to its
many degrees of freedom, obtaining this eddy viscosity with a brute-force approach was previously
too cost-prohibitive. Figure 1 illustrates computing the one-dimensional (1D) wall-normal eddy
viscosity for a canonical turbulent channel flow using brute force and our proposed approach.
Averaging is taken in time and over homogeneous streamwise and spanwise directions, such that
the eddy viscosity is only a function of the wall-normal direction. The mean velocity gradient
is specified as an impulse at a wall-normal location (Fig. 1; blue plane), and a forced DNS is
used to examine the Reynolds stress response. One such brute-force simulation characterizes how
the mean velocity gradient at a specific location influences the Reynolds stress at all wall-normal
locations, forming a column of the discretized eddy viscosity. The proposed adjoint-based approach
characterizes how the Reynolds stress at a specific location (Fig. 1; orange plane) is influenced by the
mean velocity gradient at all wall-normal locations, forming a row of the discretized eddy viscosity
and is more physically relevant. Computing a row using the brute-force approach would have
required obtaining all columns of the eddy viscosity, using a separate simulation for each column.
For the 1D wall-normal eddy viscosity, the number of simulations needed is equal to the number of
mesh points in the wall-normal direction. For the 2D streamwise and wall-normal eddy viscosity,
the number of simulations needed is the number of mesh points in the streamwise and wall-normal
directions, and hence, was previously too cost-prohibitive to investigate with a brute-force approach.
While this work focuses on Reynolds stress closures, our adjoint-based approach applies to more
general closures, including for scalar fluxes [13], compressible flows [4,14], and disperse multiphase
flows [15].

The adjoint-based formulation in this work can also aid in efficiently computing the eddy
viscosity for the entire domain. Bryngelson et al. [16] revealed hidden sparsity in the discretized
eddy viscosity to establish fast MFM, substantially reducing the number of simulations required to
obtain the generalized eddy viscosity. This work’s adjoint-based method enables a straightforward
and computationally efficient way of recovering the operator rows (and columns) required for the
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FIG. 1. MFM illustration for obtaining the 1D wall-normal eddy viscosity for channel flow. With a brute-
force approach, the mean velocity gradient, ∂U1/∂x2, is specified as an impulse at a wall-normal location (blue
plane), which corresponds to activating one element of the mean velocity gradient vector as shown in the top
right of the figure. A forced DNS is used to measure the Reynolds stress response, −u′

iu
′
j at all x2 locations. This

recovers one column of the discretized eddy viscosity, D, and must be repeated for all mean velocity gradient
locations. The proposed adjoint MFM obtains a more physically relevant row of D, relating the Reynolds stress
at one location (orange plane) to the mean velocity gradient at all wall-normal locations as shown in the bottom
right of the figure.

LU recovery algorithm underlying fast MFM [16,17]. Through selective forcing, such that the output
of each simulation contains information about multiple rows and columns of the discretized eddy
viscosity, Bryngelson et al. [16] reconstruct the discretized eddy viscosity for the entire domain
using substantially fewer simulations than a brute-force approach.

Using the adjoint-based MFM formulation developed in this work, we investigate the 2D
streamwise and wall-normal nonlocal eddy viscosity in turbulent channel flow at several near-wall
locations at Reτ = 180. Hamba [13] computed the streamwise and wall-normal nonlocal eddy
diffusivity for passive scalar transport in turbulent channel flow at Reτ = 180 using a brute-
force approach. Here, we investigate momentum transport. Prior works [6,18] investigated the
1D wall-normal nonlocal eddy viscosity in turbulent channel flow at Reτ = 180 using brute-force
approaches. This work extends the focus to nonlocality in the streamwise direction. While the
streamwise direction is homogeneous in turbulent channel flow, we use the eddy viscosity to
understand nonlocal effects in wall-bounded flows by considering turbulent channel flow as a
canonical test case.

In Sec. II, we define the generalized eddy viscosity and illustrate the cost of obtaining it using
MFM. In Sec. III, we develop adjoint MFM for obtaining the eddy viscosity for a specific Reynolds
stress location. In Sec. IV, we discuss the numerical details of the simulations. In Sec. V, we
compare MFM and adjoint MFM for computing the 1D wall-normal nonlocal eddy viscosity in
turbulent channel flow at Reτ = 180. We then use adjoint MFM to obtain the 2D streamwise and
wall-normal nonlocal eddy viscosity at several near-wall locations. We also characterize the stream-
wise nonlocality lengthscale, examine the anisotropy in the eddy viscosity tensor, and discuss the
physical implications for the lengthscales and timescales used in Reynolds stress transport models.

II. PROBLEM FORMULATION

Many RANS models [2–4] use the Boussinesq approximation [19] in which there are two
underlying assumptions: (1) The lengthscales and timescales of the underlying velocity fluctuations
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are much smaller than that of the mean velocity fields, and hence the mixing by the turbulent
fluctuations is assumed to be local; (2) the mixing by the underlying fluctuations is assumed to
be isotropic; hence, the Reynolds stress tensor and mean strain rate tensor are aligned. Under the
Boussinesq approximation, an analogy is drawn to Brownian motion, for which random molecular
mixing is modeled using a diffusive flux, and the Reynolds stress is modeled in terms of a scalar eddy
viscosity and the mean velocity gradient. However, for turbulent flows, the underlying assumptions
of the Boussinesq approximation are often invalid [20].

Hamba [5] developed an exact closure for the Reynolds stress, −u′
iu

′
j , using a generalized eddy

viscosity:

−u′
iu

′
j (x, t ) =

∫
y,τ

Di jkl (x, y, t, τ )
∂Ul

∂xk

∣∣∣∣
y,τ

dydτ, (1)

where Di jkl (x, y, t, τ ) is the nonlocal and anisotropic eddy viscosity kernel, and Ul is the mean
velocity. The eddy viscosity is (1) spatiotemporally nonlocal in that the Reynolds stress depends on
the mean velocity gradient at all points in space and time and (2) anisotropic in that the Reynolds
stress tensor and velocity gradient tensor are not necessarily aligned.

Hamba [5] and Park and Mani [6] computed the wall-normal nonlocal eddy viscosity kernel for
turbulent channel flow at Reτ = 180. Hamba [5] used the Green’s function solution to a linearized
equation for the velocity fluctuations. Park and Mani [6] used inverse MFM (IMFM), where
forcing is added to the governing equations to maintain a pre-specified mean velocity gradient.
For computing the generalized eddy viscosity, Liu et al. [9] showed that the two approaches are
equivalent. However, Hamba [5] further performed averaging of the components of Di jkl to enforce
symmetry in the eddy viscosity tensor, e.g., (D2121 + D1221)/2, whereas Park and Mani [6] did not.
We discuss IMFM in this work, although one can also use the approach of Hamba [5].

Park and Mani [6] simultaneously solve the incompressible Navier–Stokes equations:

∂ui

∂t
+ ∂u jui

∂x j
= − ∂ p

∂xi
+ 1

Re

∂2ui

∂x j∂x j
+ ri, (2a)

∂ui

∂xi
= 0, (2b)

where Re is the Reynolds number, p is the fluctuating pressure, and ri is a body force, which for
turbulent channel flow is the nondimensionalized mean pressure gradient, ri = (1, 0, 0), and the
generalized momentum transport (GMT) equations:

∂vi

∂t
+ ∂u jvi

∂x j
= − ∂q

∂xi
+ 1

Re

∂2vi

∂x j∂x j
+ si, (3a)

∂vi

∂xi
= 0, (3b)

where u j is the advection velocity obtained from the Navier–Stokes equations, vi is a transported
vector field, q is a generalized pressure to ensure that vi is solenoidal, and si is the IMFM forcing
(and must satisfy si = si). In this formulation, the eddy viscosity is

−u′
iv

′
j (x, t ) =

∫
y,τ

Di jkl (x, y, t, τ )
∂Vl

∂xk

∣∣∣∣
y,τ

dydτ. (4)

The relationship between the closure operator in Eqs. (4) and (1) is further discussed in Mani and
Park [8] and Hamba [5]. Mani and Park [8] showed that in the absence of forcing, the vector field
vi in the GMT equations in Eqs. (3a) and (3b) exponentially converges to the DNS velocity field ui.
Moreover, Park and Mani [6] numerically showed that substitution of the measured eddy viscosity
kernel, Di jkl (x, y, t, τ ), from Eq. (4) into Eq. (1) with the DNS mean velocity gradient results in
Reynolds stresses identical to DNS for turbulent channel flow.
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FIG. 2. (a) D2121(x2, y2) component of the generalized eddy viscosity for a turbulent channel flow at Reτ =
180. D2121(x2, y2) represents the dependence of the shear component of the Reynolds stress, −u′

2v
′
1(x2), on

∂V1/∂x2|y2 . Reproduced from Park and Mani [6] with author permission. (b) D2121(x2, y2) for x2 as labeled.
Uses data from Park and Mani [6].

As a 1D example, Fig. 2(a) shows the D2121(x2, y2) component of the wall-normal nonlocal eddy
viscosity kernel for statistically stationary turbulent channel flow at Reτ = 180 reproduced from
Park and Mani [6], where

−u′
2v

′
1(x2) =

∫
D2121(x2, y2)

∂V1

∂x2

∣∣∣∣
y2

dy2. (5)

Averaging is taken in time and in the homogeneous streamwise (x1) and spanwise (x3) directions.
The D2121(x2, y2) component represents the dependence of the shear component of the Reynolds
stress, −u′

2v
′
1(x2), on the mean velocity gradient at all locations, ∂V1/∂x2|y2 . To compute the eddy

viscosity kernel, Park and Mani [6] used the IMFM forcing to maintain the mean velocity gradient,
∂V1/∂x2, as a Dirac δ function. At each time step, the governing equation is first time advanced
without the forcing to solve for an intermediate velocity field, and then the forcing is added in a
correction step to ensure the velocity field at the next time step has the requisite mean velocity
as discussed in Refs. [8,16]. In discretized form, b = Av, where b = −u′

2v
′
1 is a N × 1 vector,

A = D2121 is a N × N matrix, v = ∂V1/∂x2 is a N × 1 vector, and N is the number of degrees of
freedom in the averaged space (number of mesh points in x2). Using IMFM to specify the velocity
gradient as v = [1 0 . . . 0]� (a discrete Dirac δ function) and post-processing the resulting −u′

2v
′
1

from a simulation of the Navier–Stokes equations (2a) and (2b) and GMT equations (3a) and (3b)
leads to the first column of A. Specifying v = [0 1 . . . 0]� leads to the second column, and so forth.
Thus, obtaining the generalized eddy viscosity using IMFM, or equivalently Hamba’s approach [5]
here, requires as many simulations as degrees of freedom in the averaged space. In the case of Park
and Mani [6], 144 simulations were required to produce the eddy viscosity shown in Fig. 2(a). Each
simulation solves the incompressible Navier–Stokes and GMT equations; hence, the total cost is
equivalent to 288 DNSs.

Each simulation obtains a column of Di jkl , but the rows of Di jkl are more useful from a physical
perspective. The rows give the dependence of the Reynolds stresses at a given location on the mean
velocity gradient at all locations. The rows give information about the importance of nonlocality and
regions of mean velocity gradient sensitivity. Moreover, the rows of Di jkl are generally not identical
to the columns. For example, from Fig. 2(a) it may seem that D2121(x2 = −0.565, y2) is symmetric
and equal to D2121(x2, y2 = −0.565). Figure 3 shows clear differences between a row of D2121 at
x2 = −0.565 and a column at the same location. We first address the need for a method for obtaining
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FIG. 3. A row of D2121 at x2 = −0.565, i.e., D2121(x2 = −0.565, y2) and the corresponding column,
D2121(x2, y2 = −0.565), which shows that D2121(x2, y2) is not symmetric (data from Park and Mani [6] with
author permission).

targeted rows of the generalized eddy viscosity without performing a brute-force computation of all
columns of the eddy viscosity by developing adjoint MFM. We show verification of adjoint MFM by
comparing the 1D wall-normal eddy viscosity at x2 = −0.565 with Park and Mani [6]. We then use
adjoint MFM to quantify the 2D streamwise and wall-normal eddy viscosity at near-wall locations.

III. ADJOINT MFM

We develop a method for obtaining a specific row of the generalized eddy viscosity, representing
the nonlocal dependence of the Reynolds stress at a specific point on mean velocity gradients at all
points in space/time, using an adjoint formulation of the GMT equations. To simplify the exposition,
we derive adjoint MFM in the discrete setting in terms of linear operators represented by finite-
dimensional matrices and using the Euclidean inner product. In this case, taking the adjoint of a
linear operator amounts to taking the conjugate transpose of its matrix representation. Our derivation
extends to the continuous case by replacing matrices with linear operators on function spaces and
transposes with adjoints with respect to the energy inner product. We use Di jkl to denote the eddy
viscosity discretely and Di jkl (x, y) to denote the eddy viscosity kernel continuously.

The generalized eddy viscosity is part of a linear operator, L, that acts on the mean variables, V ,
such that the mean equation is

LV = 0. (6)

After discretization, V is a finite-dimensional vector of all mean velocity components and pressure,
V = [Vj Q]�, and L includes closed operators and the Reynolds stress closure operator, L′

, formed
by the eddy viscosity, written in block form as

L =
⎡
⎣ ∂

∂t + Ui
∂

∂xi
− 1

Re
∂2

∂xi∂xi
+ L′ ∂

∂x j

∂
∂x j

0

⎤
⎦, (7)

where the partial derivatives are discretized operators, and where

L′
V = ∂

∂xi
u′

iv
′
j = − ∂

∂xi
Di jkl

∂Vl

∂xk
. (8)
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Similarly, the governing equations, e.g., the GMT equations (3a) and (3b), can be discretized as

Lv = 0. (9)

Mani and Park [8] show that

L = (PL−1E )−1, (10)

where P is a projection operator such that V = Pv and E is an extension operator such that
E = nP�, where n is the number of points used for averaging. The derivation of (10) is shown
in Appendix A. In practice, most problems have many degrees of freedom, and L is expensive to
invert directly. IMFM takes advantage of computational fluid dynamics solvers to compute Eq. (10)
column-by-column by considering the forced mean equation:

LV = s, (11)

which can be computationally assessed by forcing the DNS equation:

L v = s, (12)

where s = Es (the extension operator is added since s and s may have different dimensions as
discussed in Appendix A). Linear algebraically speaking, the s obtained for a given V is the
matrix-vector product of L with V . IMFM allows computing individual columns of L by choosing
V , e.g., as V = [1 0 . . . 0]� to obtain the first column of L. Once L is obtained, one can derive
L′

by subtracting the closed temporal and spatial derivatives in Eq. (7), and inverting the spatial
derivatives:

Di jkl = −
[

∂

∂xi

]−1

L′
[

∂

∂xk

]−1

. (13)

In 1D problems, it is possible to compute Di jkl from Eq. (13). To circumvent the ill-posedness of in-
verting multi-dimensional divergence operators, Park and Mani [6] instead compute the generalized
eddy viscosity directly from Eq. (8),

−u′
iv

′
j = Di jkl

∂Vl

∂xk
, (14)

by using IMFM to specify Vl and post-processing −u′
iv

′
j as described in Sec. II.

The desired rows of the averaged operator, L, in Eq. (11) are the same as the columns of its

transpose, L�
, which can be computed from Eq. (10) according to

L� = (E�L−�P�)−1 = (PL−�E )−1. (15)

Equation (15) is similar to Eq. (10), and rather than inverting L� directly, IMFM can be used to

compute columns of L�
by considering

L�
V † = s†, (16)

which can be computationally assessed by forcing the following DNS equation:

L� v† = s†, (17)

where the dagger notation is used to distinguish Eqs. (16) and (17) from Eqs. (11) and (12). Here,
Eq. (17) is a discretization of the adjoint of the GMT equations in Eqs. (3a) and (3b):

−∂v
†
i

∂t
− ∂u jv

†
i

∂x j
= ∂q†

∂xi
+ 1

Re

∂2v
†
i

∂x j∂x j
+ s†

i , (18a)

∂v
†
i

∂xi
= 0, (18b)
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where v
†
i and q† are the adjoint velocity and pressure, respectively. We define a reverse time T ≡

t f − t , where t f is the final simulation time, so

∂v
†
i

∂T
− ∂u jv

†
i

∂x j
= ∂q†

∂xi
+ 1

Re

∂2v
†
i

∂x j∂x j
+ s†

i , (19a)

∂v
†
i

∂xi
= 0. (19b)

The advective velocity fields, u j , are first computed using a DNS of the incompressible Navier–
Stokes equations in forward time order and then read in reverse time order for solving (19a). It
is important to remark that the adjoint equations (19) are the dual of the GMT system and not the
Navier–Stokes equations. As a result, these equations differ from the adjoint Navier–Stokes operator
commonly adopted in nonlinear optimization and data assimilation [e.g., 21–23]. Specifically, the
difference arises due to the treatment of the advection term, which is linear in the GMT system and is
linearized when deriving the adjoint to the Navier–Stokes equations. In this regard, the adjoint GMT
equation (19a) is therefore more akin to the adjoint to the scalar transport equation [24], but also
additionally includes the adjoint pressure q† and is accompanied by the divergence-free condition
(19b).

As with the forward direction, rather than compute the columns of L�
, we directly consider the

transpose of the closure operator,

L�′ = − ∂

∂xi
D�

kli j

∂

∂xk
, (20)

found by taking the transpose of L′
in Eq. (8). In considering the transpose of Di jkl , the tensorial

components are transposed such that i jkl → kli j, and the transpose notation � denotes swapping
the rows and columns, e.g., D(x, y) → D(y, x). The closure term for the adjoint equation in
Eq. (19a) is

L�′
V † = − ∂

∂xi
u′

iv
†′
j = − ∂

∂xi
D�

kli j

∂V †
l

∂xk
. (21)

A column of D�
kli j can be obtained by using IMFM to specify the adjoint mean velocity gradient,

solving the adjoint GMT equations in Eqs. (19a) and (19b), and post-processing the adjoint
Reynolds stress.

For example, consider the discretization of the (nonadjoint) generalized eddy viscosity of Eq. (4):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u′
1v

′
1

−u′
1v

′
2

−u′
1v

′
3

−u′
2v

′
1

...

−u′
3v

′
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1112 D1113 D1121 . . . D1133

D1211 D1212 D1213 D1221 . . . D1233

D1311 D1312 D1313 D1321 . . . D1333

D2111 D2112 D2113 D2121 . . . D2133

...
...

...
...

. . .
...

D3311 D3312 D3313 D3321 . . . D3333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂V1/∂x1

∂V2/∂x1

∂V3/∂x1

∂V1/∂x2

...

∂V3/∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

where for each i, j, k, l ∈ {1, 2, 3}, −u′
iv

′
j is a N × 1 vector, Di jkl is a N × N block matrix, ∂Vl/∂xk

is a N × 1 vector, and N is the number of degrees of freedom in the averaged space. In IMFM,
as used by Park and Mani [6], forcing one element of ∂V1/∂x2 to be nonzero and post-processing
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−u′
iv

′
j leads to one column in each Di j21 matrix. For adjoint MFM:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u′
1v

†′
1

u′
1v

†′
2

u′
1v

†′
3

u′
2v

†′
1

...

u′
3v

†′
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D�
1111 D�

1211 D�
1311 D�

2111 . . . D�
3311

D�
1112 D�

1212 D�
1312 D�

2112 . . . D�
3312

D�
1113 D�

1213 D�
1313 D�

2113 . . . D�
3313

D�
1121 D�

1221 D�
1321 D�

2121 . . . D�
3321

...
...

...
...

. . .
...

D�
1133 D�

1233 D�
1333 D�

2133 . . . D�
3333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂V †
1 /∂x1

∂V †
2 /∂x1

∂V †
3 /∂x1

∂V †
1 /∂x2

...

∂V †
3 /∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

Forcing one element of ∂V †
1 /∂x2 to be nonzero and post-processing u′

iv
†′
j leads to one column in

each D�
21i j matrix, i.e., a row in each D21i j matrix. If, for example, a row of D1121 is desired instead,

then one should force an element of ∂V †
1 /∂x1 and post-process u′

2v
†′
1 in a separate simulation. The

general expression in continuous form is

u′
kv

†′
l (y, τ ) =

∫
x,t

Di jkl (x, y, t, τ )
∂V †

j

∂xi

∣∣∣∣
x,t

dxdt, (24)

where we have relabeled the indices i ↔ k and j ↔ l and the coordinates x ↔ y and t ↔ τ to keep
the ordering in Di jkl (x, y, t, τ ) identical to the eddy viscosity kernel in Eq. (4).

Adjoint MFM for passive scalar transport is shown in Appendix B. As a simpler case than
momentum transport, the derivation for passive scalar transport more clearly shows the transposition
of the indices to arrive at Eq. (20).

IV. CHANNEL SETUP AND NUMERICAL DETAILS

For the turbulent channel flow DNS, we use the three-dimensional incompressible Navier–Stokes
solver developed by Bose et al. [25] and modified by Seo et al. [26]. The flow is driven by a
nondimensionalized mean pressure gradient, ri = (1, 0, 0). The Reynolds number, Reτ = uτ δ/ν, is
defined based on the channel half-height, δ = 1, and friction velocity, uτ = 1.

Park and Mani [6] modified the solver to include the GMT equations in Eqs. (3a) and (3b).
We modified the solver for the adjoint GMT equations in Eqs. (19a) and (19b). We first conduct a
DNS with output fields uj at each timestep. We then solve Eq. (19a) by stepping backward in time
and reading the u j fields in reverse order. The solenoidal condition in Eq. (19b) is enforced using
a fractional-step method. The post-processing involves averaged statistics, not instantaneous flow
fields, so the differences between continuous and discrete adjoint formulations are unimportant [27].

Periodic boundary conditions are enforced in the streamwise (x1) and spanwise (x3) directions,
and no-slip and no-penetration boundary conditions are enforced at the walls. All solvers use semi-
implicit time advancement [28]; second-order Crank–Nicolson is used for the wall-normal diffusion
terms, and Adams–Bashforth is used for all other terms. For spatial discretization, the solvers use
second-order finite differences on a staggered mesh [29] with uniform spacing in x1 and x3 and
nonuniform spacing in x2. The pressure Poisson equation is solved using Fourier transforms in the
periodic x1 and x3 directions and a tridiagonal solver in the x2 direction.

For the 1D wall-normal eddy viscosity, Park and Mani [6] used a domain size of L1 × L2 × L3 =
2π × 2 × π with N = 144 grid cells in each direction, which we follow for comparison purposes.
For the 2D streamwise and wall-normal eddy viscosity, due to the long streamwise extent of the
eddy viscosity kernel, we doubled the domain size in the x1 direction to L1 = 4π . The resolution
and remaining directions are unchanged from Park and Mani [6].
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A. Obtaining rows of D2121 for the 1D wall-normal eddy viscosity

For the 1D wall-normal eddy viscosity, Park and Mani [6] specified the mean streamwise velocity
as Heaviside functions, V1 = θ (x2 − x∗

2 ), at wall-normal locations, x∗
2 , which are maintained by the

forcing. This specifies the mean velocity gradient as a Dirac δ function, ∂V1/∂x2 = δ(x2 − x∗
2 ).

Park and Mani [6] then post-processed −u′
2v

′
1 to obtain the column of D2121 at x∗

2 and repeated the
procedure for all x∗

2 . The adjoint mean streamwise velocity is also specified as a Heaviside function,

and post-processing of u′
2v

†′
1 leads to a row of D2121.

B. Obtaining rows of other components of Di j21 for the 1D wall-normal eddy viscosity

For other components, which require maintaining adjoint mean velocity gradient directions
other than ∂V †

1 /∂x2 as Dirac δ functions, specifying the adjoint mean velocity fields as Heaviside
functions may not be mathematically well-posed. For example, obtaining a row of D1121 requires

specifying ∂V †
1 /∂x1 as a Dirac δ function, ∂V †

1 /∂x1 = δ(x2 − x∗
2 ), and post-processing u′

2v
†′
1 . An

adjoint mean velocity field that satisfies both ∂V †
1 /∂x1 = δ(x2 − x∗

2 ) and ∂V †
1 /∂x2 = 0 does not ex-

ist. Thus, we decompose the adjoint velocity field into v
†
i = V †

i + v
†′
i , specify ∂V †

1 /∂x1 analytically,
and solve the corresponding equation for v

†′
i . In other words, the decomposition is substituted into

the adjoint GMT equation in Eq. (19a):

∂V †
i

∂T
+ ∂v

†′
i

∂T
− u j

∂V †
i

∂x j
− u j

∂v
†′
i

∂x j
= ∂q†

∂xi
+ 1

Re

∂2V †
i

∂x j∂x j
+ 1

Re

∂2v
†′
i

∂x j∂x j
+ s†

i , (25)

and ∂V †
i /∂x j is analytically specified. The IMFM forcing, s†

i , now maintains v
†′
i = 0. For further

simplification, the mean temporal term and mean diffusion term may be absorbed by the forcing

since they adhere to the property s†
i = s†

i :

∂v
†′
i

∂T
− u j

∂V †
i

∂x j
− u j

∂v
†′
i

∂x j
= ∂q†

∂xi
+ 1

Re

∂2v
†′
i

∂x j∂x j
+ s†

i . (26)

Continuing the above example for obtaining a row of D1121, substituting ∂V †
1 /∂x1 = δ(x2 − x∗

2 )
into (26) leads to the following equation for v

†′
i :

∂v
†′
i

∂T
− u1δ(x2 − x∗

2 )δi1 − ∂u jv
†′
i

∂x j
= ∂q†

∂xi
+ 1

Re

∂2v
†′
i

∂x j∂x j
+ s†

i , (27)

where δi1 is the Kronecker δ and s†
i maintains v

†′
i = 0. We enforce a solenoidal v

†′
i as

∂v
†′
i

∂xi
= 0. (28)

While the solenoidal condition is enforced on v
†′
i , the analytically specified adjoint mean velocity

gradient may not be solenoidal, e.g., when ∂V †
1 /∂x1 = δ(x2 − x∗

2 ) and all other adjoint mean velocity
gradient components are zero. Because the GMT equations in Eqs. (3a) and (3b) are linear and
ultimately only the superposition of the components of Di jkl is needed for the Reynolds stress
tensor, we relax the solenoidal constraint on the adjoint mean velocity gradient to ease computation
of the individual components of Di jkl by activating various components of the adjoint mean velocity
gradient independently. Alternatively, the adjoint mean velocity gradient can be considered an
IMFM forcing to the governing equation for v

†
i that satisfies the requisite property s† = s†.
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C. Obtaining rows of Di jkl for the 2D streamwise and wall-normal eddy viscosity

The 2D streamwise and wall-normal eddy viscosity for statistically stationary turbulent channel
flow is:

−u′
iu

′
j (x1, x2) =

∫
y1,y2

Di j21(x1, x2, y1, y2)
∂U1

∂x2

∣∣∣∣
y1,y2

dy1dy2, (29)

where averaging is taken in time and the homogeneous spanwise (x3) direction. Using adjoint MFM:

u′
kv

†′
l (y1, y2) =

∫
x1,x2

Di jkl (x1, x2, y1, y2)
∂V †

j

∂xi

∣∣∣∣
x1,x2

dx1dx2. (30)

For example, the nonlocal eddy viscosity component, D2121, corresponding to the influence of the
mean velocity gradient, ∂V1/∂x2, on the shear component of the Reynolds stress, −u′

2v
′
1, using

adjoint MFM is

u′
2v

†′
1 (y1, y2) =

∫
x1,x2

D2121(x1, x2, y1, y2)
∂V †

1

∂x2

∣∣∣∣
x1,x2

dx1dx2, (31)

where we specify ∂V †
1 /∂x2 = δ(x1 − x∗

1 )δ(x2 − x∗
2 ) and zero for all other adjoint mean velocity

gradient components, and post-process u′
2v

†′
1 (y1, y2) to obtain D2121(x1 = x∗

1, x2 = x∗
2, y1, y2). The

flow is homogeneous in the x1 direction, so x∗
1 can be any streamwise location, and the eddy

viscosity is a function of the distance, y1 − x1. Instead of reporting the 2D eddy viscosity kernel
as Di jkl (x1, x2, y1, y2), we will omit the first input and report Di jkl (x2, y1 − x1, y2).

Similar to Sec. IV B, specifying the adjoint mean velocity field as a Heaviside function to enforce
the mean velocity gradient as a Dirac δ function is not mathematically well-posed. For example, an
adjoint mean velocity field that satisfies ∂V †

1 /∂x2 = δ(x1 − x∗
1 )δ(x2 − x∗

2 ) and ∂V †
1 /∂x1 = 0 does

not exist. Thus, similar to Sec. IV B, we decompose the adjoint velocity field into v
†
i = V †

i + v
†′
i

and specify ∂V †
1 /∂x2 analytically in the equation for v

†′
i . The decomposition allows us to examine

each component of Di jkl independently and does not violate any mathematical constraints when
a consistent superposition of the various components of the mean velocity gradient appears in the
RANS equation. Computing other components of the nonlocal eddy viscosity is similar to Sec. IV B,
where adjoint MFM transposes the components of Di jkl .

V. RESULTS

A. One-dimensional wall-normal eddy viscosity comparison

For verification, we compare the 1D wall-normal eddy viscosity at one location, x2 = −0.565,
obtained using the adjoint formulation with that of Park and Mani [6] obtained using a brute-force
approach at Reτ = 180. We chose x2 = −0.565, corresponding to row 50 out of 144, due to its
significant asymmetry in the row versus column as shown in Fig. 3, although we expect the results
to hold for all x2 locations. Park and Mani [6] averaged over 500 eddy turnover time (δ/uτ ) for their
modeling purposes, whereas we averaged over 115 eddy turnover time, which we found sufficient
for verification purposes.

Figure 4 shows the eddy viscosity from the adjoint formulation closely matching that of Park and
Mani [6]. The normalized error is less than 1%. We attribute this error to statistical convergence and
the shorter averaging times used. For example, the normalized error of a regular MFM calculation
averaged over 115 eddy turnover time and compared with the corresponding column is 0.7%, and
the normalized error of the adjoint MFM calculation used here is 0.8%. Therefore, the differences
in Fig. 4 are within the uncertainty bounds of the calculation.

Figure 5 shows a comparison for the other components of Di j21, which are even more asymmetric
with regards to rows versus columns as shown in Appendix C. Note D2121 in Fig. 4 is not expected
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FIG. 4. Comparison of D2121(x2 = −0.565, y2) using adjoint MFM and from a brute-force calculation by
Ref. [6] using MFM.

FIG. 5. Comparison of other components of Di j21(x2 = −0.565, y2) using adjoint MFM and from a brute-
force calculation by Ref. [6] using MFM.
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to be identical to D1212 in Fig. 5 because u′
2v

′
1 and u′

1v
′
2 have different meanings. We first focused on

u′
2v

′
1 because it is the term that appears in the RANS equation for the streamwise mean velocity and

corresponds to the mixing of the streamwise momentum fluctuations v′
1 by the wall-normal fluctu-

ations u′
2. Conversely, u′

1v
′
2 appears in the RANS equation for the wall-normal mean velocity and

corresponds to the mixing of the wall-normal momentum fluctuations v′
2. Park and Mani [6] showed

that the expected property −u′
2u′

1 = ∫
D2121(x2, y2)∂U1/∂x2|y2 dy2 = ∫

D1221(x2, y2)∂U1/∂x2|y2 dy2

is satisfied. Hamba [5] enforced symmetry in the eddy viscosity by averaging the two eddy viscosity
components, e.g., (D2121 + D1221)/2, whereas Park and Mani [6] did not in light of the equality
property mentioned above.

In Fig. 5, due to differences in enforcement of the mean velocity gradient as detailed in Sec. IV B
and the staggered mesh, there is some error due to interpolation. However, the eddy viscosity from
the adjoint formulation still closely matches that of Park and Mani [6]. The largest errors are in
D1121 due to interpolating a sharp peak with 4% normalized error. The normalized error for all other
cases is less than 1.5%.

A local approximation is valid if the width of the eddy viscosity kernel is much smaller than
the lengthscale over which the mean velocity gradient varies. A local approximation would model
the eddy viscosity as a Dirac δ function such that the Reynolds stress at a given location depends
only on the mean velocity gradient at that same location. As an estimate of the kernel width of
D2121(x2 = −0.565, y2) in Fig. 4, the eddy viscosity kernel drops to 1/3 of its maximum value at
y2 = −0.64 and y2 = −0.51. The mean velocity gradient changes from 7.4 to 5.6 in this region,
which is a factor of 1.3. This change in the mean velocity gradient is nonnegligible, and we cannot
conclude that the eddy viscosity is local. This is addressed in more detail in Park and Mani [6]
and Hamba [5], which discuss the effect of a local eddy viscosity approximation on the Reynolds
stresses and the mean velocity. Adjoint MFM enables efficient computation of the nonlocal eddy
viscosity to analyze these effects for desired regions of the domain.

B. Cost comparison

A brute-force approach to obtaining the eddy viscosity requires as many simulations as degrees
of freedom in the averaged space, which for the 1D wall-normal eddy viscosity considered in the
previous section is N = 144. Each simulation solves both Navier–Stokes and GMT equations for a
total of 288 DNSs. The proposed adjoint simulation uses one simulation per desired eddy viscosity
location, which includes a forward solve of the Navier–Stokes equations and a backward solve
of the GMT equations for a total of 2 DNSs. Additional overhead is associated with reading and
writing the velocity fields to disk for the adjoint simulation, and more storage is needed. The storage
requirements of adjoint MFM are identical to those for traditional adjoint solvers for turbulent flow
problems, and for problems where storage may be an issue, checkpointing can be used [30,31].

For problems with many degrees of freedom in the averaged space, obtaining the eddy viscosity
using a brute-force approach may be computationally cost-prohibitive. For example, extension to
higher dimensions to examine the 2D streamwise and wall-normal nonlocal eddy viscosity would
need 288 × 144 (N1 × N2) simulations. However, using a single simulation, the adjoint-based
formulation enables targeted quantification of the eddy viscosity at any desired location.

C. Two-dimensional streamwise and wall-normal eddy viscosity

We now use adjoint MFM to quantify the 2D streamwise and wall-normal eddy viscosity at
near-wall locations in turbulent channel flow at Reτ = 180. While the flow is homogeneous in the
streamwise direction, we use turbulent channel flow to qualitatively gain a physical understanding
of streamwise nonlocal effects in other wall-bounded flows, such as spatially developing boundary
layers.

In Sec. V C 1, we show the 2D nonlocal eddy viscosity kernel for the shear component of the
Reynolds stress at several near-wall locations. In Sec. V C 2, we compare the row and column of
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FIG. 6. Streamwise and wall-normal eddy viscosity kernel, D2121(x2 = −0.946, y1 − x1, y2), correspond-
ing to the influence of the mean velocity gradient, ∂V1/∂x2, on the shear component of the Reynolds stress,
−u′

2v
′
1. The color bar is truncated at 10% of maximum absolute value to highlight better the region of upstream

influence on the Reynolds stress.

the 2D eddy viscosity kernel. The row captures the dependence of the Reynolds stress at a given
location on the mean velocity gradient upstream; the column captures the influence of the mean
velocity gradient at a given location on the Reynolds stress downstream. We show that the rows and
columns of the 2D nonlocal eddy viscosity are not identical, necessitating adjoint MFM to efficiently
compute the more physically relevant rows. In Sec. V C 3, we quantify the streamwise nonlocality
lengthscale based on the first-order streamwise moment of the eddy viscosity. In Sec. V C 4, we
compare this with the estimate for the streamwise nonlocality lengthscale of Park et al. [32] formed
by the first-order temporal moment of the eddy viscosity and the local mean velocity and discuss the
modeling implications of differences in these lengthscales. Lastly, in Sec. V C 5, we examine the
anisotropy in the 2D nonlocal eddy viscosity kernel by comparing other components of the mean
velocity gradient tensor and Reynolds stress tensor.

1. D2121 component of the 2D eddy viscosity

Figure 6 shows the D2121 component of the 2D streamwise and wall-normal eddy viscosity,
corresponding to the influence of the mean velocity gradient, ∂V1/∂x2, on the shear component of
the Reynolds stress, −u′

2v
′
1, at x2 = −0.946. This location corresponds to x+

2 ≈ 10 when measured
from the bottom wall in viscous units, i.e., x+

2 = (1 + x2)/δν , which is in the buffer layer and near
the location of maximum streamwise fluctuation and peak production, x+

2 ≈ 12 [33]. The color
bar is truncated at 10% of the maximum absolute value to highlight better the region of upstream
influence on the Reynolds stress. The results are averaged over 400 eddy turnover time (δ/uτ ).

Figure 6 shows oscillations near the forcing location due to the spatially singular nature of the
forcing function. The thin region that needs to be resolved to avoid these oscillations is proportional
to ν/U1 where ν = 1/Reτ = 1/180 and U1 = 8.35 at x2 = −0.946. Resolving this region would
require around 65 times finer mesh resolution than the current resolution, �x+

1 = 7.85. Appendix D
shows the effect of mesh refinement and an upwind scheme rather than a central difference scheme.

To further establish confidence in the quantified eddy viscosity kernels, in Fig. 7, we show a
comparison with the 1D wall-normal nonlocal eddy viscosity computed by Park and Mani [6]. For
comparison purposes, the 2D kernel in Fig. 6 is integrated over the streamwise direction, resulting in
an eddy viscosity that is local in the streamwise direction and nonlocal in the wall-normal direction,
similar to Park and Mani [6]. The error in Fig. 7, hardly visible in the plot, is due to interpolation
and differences in Dirac δ function location on a staggered mesh.

Figure 6 shows that the streamwise extent of the eddy viscosity kernel is much longer than the
wall-normal extent. Qualitatively, this is expected due to the larger mean streamwise flow. With
farther upstream distance from the peak (more negative y1 − x1), the kernel diminishes and spreads
farther away from the wall. At the wall, the kernel diminishes to zero as expected due to diminishing
transport from the wall-normal velocity fluctuations u′

2 and the wall boundary conditions.
Figure 8 shows the D2121 component of the 2D eddy viscosity kernel for several near-wall

locations (from top to bottom): x2 = −0.978 (x+
2 ≈ 4, viscous sublayer), x2 = −0.946 (x+

2 ≈ 10,
buffer layer), x2 = −0.859 (x+

2 ≈ 25, buffer layer), x2 = −0.819 (x+
2 ≈ 33, beginning of the log
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FIG. 7. Comparison of the 2D eddy viscosity kernel, D2121(x2 = −0.946, y1 − x1, y2), integrated over the
streamwise direction and the 1D wall-normal eddy viscosity kernel of Park and Mani [6]. There is a small
amount of error due to interpolation.

layer). The streamwise influence of the mean velocity gradient on the shear component of the
Reynolds stress both grows in magnitude and length with increasing distance from the wall. In
Sec. V C 3, we quantify this effect as a streamwise nonlocality lengthscale. The maximum of the
color bar is truncated at ±0.056, corresponding to 10% of the maximum absolute value of the 2D
eddy viscosity kernel for x2 = −0.946.

2. Comparison of streamwise row and streamwise column

We next compare D2121(x2 = x∗
2, y1 − x1, y2), e.g., as shown in Fig. 8, with D2121(x2, y1 −

x1, y2 = x∗
2 ). As discussed in Sec. II for a 1D eddy viscosity that is nonlocal in the wall-normal

direction, D2121(x2 = x∗
2, y1 − x1, y2) is a row of the discretized eddy viscosity matrix (now in a 2D

sense) showing the dependence of the shear component of the Reynolds stress at x∗
2 on the mean

velocity gradient at all points in space. For comparison, D2121(x2, y1 − x1, y2 = x∗
2 ) is a column of

the discretized eddy viscosity matrix showing the influence of the mean velocity gradient at x∗
2 on

the Reynolds stresses everywhere in the domain. Section II showed that for a 1D eddy viscosity
that is nonlocal in the wall-normal direction, the rows and columns of the discretized eddy viscosity
are not identical for turbulent channel flow, necessitating the use of adjoint MFM for efficiently
computing rows of the eddy viscosity. This section investigates the 2D eddy viscosity and focuses
on nonlocality in the streamwise direction.

Figures 9 and 10 show a comparison of D2121(x2 = x∗
2, y1 − x1, y2) and D2121(x2, y1 −

x1, y2 = x∗
2 ) at x∗

2 = −0.946 (x+
2 ≈ 10) and x∗

2 = −0.859 (x+
2 ≈ 25), respectively. The column,

D2121(x2, y1 − x1, y2 = x∗
2 ), is computed by using IMFM to specify ∂V1/∂x2 = δ(x1 − x∗

1 )δ(x2 −
x∗

2 ) and zero for all other velocity gradient components and post-processing −u′
2v

′
1. The color bars

are truncated in both figures at 10% of their respective maximum absolute values. D2121(x2, y1 −
x1, y2 = x∗

2 ) (column) has a slightly longer streamwise nonlocality lengthscale than D2121(x2 =
x∗

2, y1 − x1, y2) (row), which becomes more apparent for kernels that are farther away from the
wall, e.g., at x+

2 ≈ 25 as shown in Fig. 10. This difference is seen more clearly in Fig. 11, which
shows the kernels integrated over the wall-normal direction. Even though the flow is homogeneous
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FIG. 8. D2121(x2, y1 − x1, y2) for several wall-normal locations (from top to bottom): x2 = −0.978 (x+
2 ≈ 4,

viscous sublayer), x2 = −0.946 (x+
2 ≈ 10, buffer layer), x2 = −0.859 (x+

2 ≈ 25, buffer layer), x2 = −0.819
(x+

2 ≈ 33, beginning of the log layer).

FIG. 9. Comparison of D2121(x2 = −0.946, y1 − x1, y2) (row) and D2121(x2, y1 − x1, y2 = −0.946) (col-
umn). The location x∗

2 = −0.946 corresponds to x+
2 ≈ 10 (buffer layer).
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FIG. 10. Comparison of D2121(x2 = −0.859, y1 − x1, y2) (row) and D2121(x2, y1 − x1, y2 = −0.859) (col-
umn). The location x∗

2 = −0.859 corresponds to x+
2 ≈ 25 (buffer layer). The maximum values are similar,

while D2121(x2, y1 − x1, y2 = −0.859) (column) shows a slightly longer streamwise nonlocality lengthscale
than D2121(x2 = −0.859, y1 − x1, y2 ) (row).

in the x1 direction, the streamwise row, found by integrating the 2D nonlocal eddy viscosity kernel
in the wall-normal direction, is not simply the reverse of the streamwise column as shown in Fig. 11.

3. Characterization of the streamwise nonlocality lengthscale

We characterize the streamwise nonlocality lengthscale based on the first-order streamwise
moment of the eddy viscosity defined by

D1s
2121(x2) =

∫∫
(y1 − x1)D2121(x2, y1 − x1, y2)dy1dy2. (32)

FIG. 11. (a) Comparison of the streamwise row at x2 = −0.946 and streamwise column at y2 = −0.946,
and (b) comparison of the streamwise row at x2 = −0.859 and streamwise column at y2 = −0.859, computed
by integrating the 2D kernels in Figs. 9 and 10, respectively, over the wall-normal direction. The streamwise
column is reversed for comparison purposes to highlight that it is not identical to the streamwise row.
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FIG. 12. Comparison between the streamwise nonlocality lengthscale estimated by Park et al. [32] using
T2121U1, where T2121 = −D1t

2121/D0
2121 and D1t

2121 is the first-order temporal moment, and the lengthscale calcu-
lated using l2121 = −D1s

2121/D0
2121 from the 2D nonlocal eddy viscosity at Reτ = 180.

The first-order streamwise moment characterizes the centroid of the eddy viscosity in the streamwise
direction, given by a streamwise nonlocality lengthscale, l2121 = −D1s

2121/D0
2121, where D0

2121 is the
zeroth-order moment of the eddy viscosity:

D0
2121(x2) =

∫∫
D2121(x2, y1 − x1, y2)dy1dy2. (33)

Due to the periodicity in the x1 direction, small but nonzero values of the eddy viscosity kernel away
from the peak are heavily weighted by the distance from the peak in the calculation of D1s

2121. Hence,
careful treatment of the integral in Eq. (32) is needed as detailed in Appendix E. The streamwise
nonlocality lengthscale, l2121, is computed for various wall-normal locations in Fig. 12.

4. Assessment of spatial nonlocality as a history effect in a Lagrangian framework

One way to interpret the long streamwise extent of the 2D nonlocal eddy viscosity kernel
and the corresponding l2121 is by considering a temporal history effect along the trajectory of
a fluid parcel that moves with the mean flow. This history effect can be characterized by an
eddy viscosity kernel that is nonlocal in time and a corresponding temporal nonlocality timescale,
T2121 = −D1t

2121/D0
2121, where D1t

2121 is the first-order temporal moment. In Park et al. [32], we
used MFM to directly compute D1t

2121. Because the velocity is constant along mean streamlines for
turbulent channel flow, in a Lagrangian framework, the streamwise nonlocality lengthscale is related
to the temporal nonlocality lengthscale via T2121U1, where U1 is the local mean streamwise velocity.
Figure 12 shows a comparison between the streamwise nonlocality length calculated using the 2D
nonlocal eddy viscosity and the Lagrangian estimate based off of T2121U1 from Park et al. [32] at
Reτ = 180. As seen in Fig. 12, the two lengthscales are correlated, which is expected given the vivid
upstream structure of the eddy viscosity kernel. These lengthscales may be used interchangeably for
qualitative estimates of the magnitude of spatial or temporal nonlocality scales. However, as seen in
Fig. 12, l2121 = −D1s

2121/D0
2121 and T2121U1 are not identical, particularly starting in the buffer layer

and into the log layer.
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FIG. 13. Comparison between D2121 and D2111 at x2 = −0.946 (x+
2 ≈ 10). The D2111 component shows the

influence of streamwise gradient of the mean velocity, ∂V1/∂x1, on the shear component of the Reynolds stress,
−u′

2v
′
1.

This difference between l2121 and T2121U1 has implications for modeling and suggests modi-
fications to the model form starting in the buffer layer. Models often include nonlocal effects
by considering a history effect along Lagrangian trajectories using the material derivative and a
relaxation timescale, e.g., Reynolds stress transport models [34,35]:

T
D

Dt
u′

iu
′
j = −u′

iu
′
j + . . . . (34)

This formulation includes an implied streamwise nonlocality lengthscale TU1 from the advection
term. To match the measured streamwise nonlocality length, there should be additional terms with
the first-order spatial derivative of the Reynolds stresses, e.g., a ∂

∂x1
u′

iu
′
j . For example, this could be

achieved with a cross-diffusion term or a spatially varying turbulent viscosity.

5. Assessment of anisotropy in the 2D eddy viscosity

In this section, we examine the anisotropy of the 2D eddy viscosity by considering other
components of Di jkl . We begin by examining the D21kl components of eddy viscosity corresponding
to the shear component of the Reynolds stress, −u′

2v
′
1, and other components of the mean velocity

gradient tensor, ∂Vl/∂xk , specifically focusing on ∂V1/∂x1. We then examine the Di j21 components
of the eddy viscosity corresponding to the normal components of the Reynolds stress, −u′

iv
′
j , and

the wall-normal mean velocity gradient, ∂V1/∂x2.
Figure 13 shows a comparison of the D2121 and D2111 component of the eddy viscosity at x2 =

−0.946 (x+
2 ≈ 10). The D2111 component shows the influence of the streamwise gradient of the

mean velocity, ∂V1/∂x1, on the shear component of the Reynolds stress, −u′
2v

′
1. While ∂V1/∂x1

is inactive in channel flow since x1 is a homogeneous direction, this component would be active
in a spatially developing boundary layer or a separated flow. We use the 2D eddy viscosity kernel
from channel flow to qualitatively estimate the nonlocal effects present in other wall-bounded flows.
Figure 13 shows that the D2111 component has a much larger magnitude than the D2121 component
(the color bars are truncated at 10% of their maximum respective values), indicating that the shear
component of the Reynolds stress has a greater sensitivity to ∂V1/∂x1 than ∂V1/∂x2. Figure 14 shows
a similar comparison of the same two components for x2 = −0.859 (x+

2 ≈ 25).
The u′

2v
′
1 component of the Reynolds stress tensor describes mixing of the streamwise momen-

tum fluctuations, v′
1, by wall-normal fluctuations, u′

2. The Boussinesq approximation would imply
this mixing flux is sensitive only to the wall-normal gradient of the mean streamwise velocity.

094606-19



JESSIE LIU et al.

FIG. 14. Comparison between D2121 and D2111 at x2 = −0.859 (x+
2 ≈ 25).

However, we observe a stronger sensitivity to the streamwise gradient (not only is it nonnegligible,
but larger than the sensitivity to the wall-normal gradient).

We additionally examine anisotropy in the eddy viscosity by considering the influence of the
wall-normal mean velocity gradient, ∂V1/∂x2, on the normal components of the Reynolds stress
tensor. Figure 15 shows a comparison between the shear component, D2121, and normal components,
D1121, D2221, D3321, of the 2D nonlocal eddy viscosity kernel at x2 = −0.946 (x+

2 ≈ 10). Each
component is normalized by its respective zeroth-order moment, D0

i j21. The color bar is truncated
for easier visual comparison between the components. Due to the long extent of the streamwise
nonlocality, the periodic domain affects D3321. Appendix F discusses the domain effects on the eddy
viscosity in more detail. The shear component D2121 has the shortest streamwise nonlocal effect,
while the normal components have a much longer streamwise nonlocal effect.

Models that use an isotropic eddy viscosity, e.g., Spalart–Allmaras [2], Menter SST [3], and
Wilcox k–ω [4] models, are unable to capture these effects. For example, under a local and isotropic
approximation, −u′

iu
′
j = 2νT Si j , where νT is the eddy viscosity, and Si j is the mean strain rate

tensor. These models partially include history effects, i.e., dependence on the upstream conditions
through a Lagrangian material derivative, by using evolution equations for the eddy viscosity (or
equations for characteristic quantities that can be used to form the eddy viscosity, such as the
turbulent kinetic energy scale k and dissipation scale ε). However, isotropic models use the same
eddy viscosity for all components of the Reynolds stress. Figure 15 clearly shows differences
in the upstream extent and magnitude of the eddy viscosity among different components of the
Reynolds stresses. This anisotropy in the eddy viscosity for near-wall Reynolds stresses influences
important aspects of wall-bounded flows, such as the prediction of the friction coefficient and
separation.

Reynolds stress transport models [34,35] can capture anisotropy by using a transport equation for
each component of the Reynolds stress. Most models use an isotropic history timescale, e.g., T =
k/ε for all components of the Reynolds stress tensor where k is the characteristic turbulent kinetic
energy scale and ε is the characteristic dissipation scale. Model terms that couple the Reynolds
stresses, e.g., the return to isotropy term, can modify the effective history timescale and thus the
upstream dependence. The presented nonlocal kernel data in Fig. 15 provides a quantitative guide
for the expected history timescales for Reynolds stress transport modeling.

VI. CONCLUSION

The generalized eddy viscosity at a specific location relates the Reynolds stress at that location
to mean velocity gradients at all locations, which can be used to characterize nonlocality and
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FIG. 15. Comparison between the shear component, D2121, and the normal components, D1121, D2221, D3321,
of the 2D nonlocal eddy viscosity at x2 = −0.946 (x+

2 ≈ 10). Each component is normalized by its respective
zeroth-order moment, D0

i j21.

sensitivity to the mean velocity gradient. In this work, we developed an adjoint-based MFM to
cost-effectively compute the eddy viscosity at a specific location of the Reynolds stress using one
simulation. Previous brute-force approaches [5,8] forced the mean velocity gradient at each location
in the averaged space and computed the Reynolds stress response, requiring a separate simulation
for each mean velocity gradient location. Hence, these approaches needed as many simulations as
degrees of freedom in the averaged space.

Adjoint MFM can be used to compute the eddy viscosity in regions of interest in turbulent
flows, such as at flow separation or reattachment points, to examine nonlocal effects and inform
RANS models of deficiencies in their eddy viscosity approximations. A brute-force approach
would characterize the eddy viscosity for the entire domain (including regions where RANS
models perform adequately) and require many simulations. Conversely, adjoint MFM can be
used for a more targeted computation of the eddy viscosity in only regions of interest and fewer
simulations.

For applications where the generalized eddy viscosity for the entire domain is still desired,
adjoint MFM can also aid in substantially reducing the number of simulations to approximate
the discretized eddy viscosity operator. Fast MFM [16] leverages hidden sparsity in the dis-
cretized eddy viscosity and uses a limited number of forward and adjoint MFM simulations, such
that each simulation contains information about multiple rows and columns. For example, for
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the 1D wall-normal eddy viscosity of Park and Mani [6], which required N = 144 simulations
using a brute-force approach, fast MFM uses N = 20 simulations to approximate the nonlo-
cal eddy viscosity such that the reconstructed Reynolds stresses are virtually indistinguishable
from DNS.

We then used adjoint MFM to investigate the streamwise and wall-normal extent of the eddy
viscosity kernel in turbulent channel flow at several near-wall locations from the viscous sublayer to
the log layer. The data files for the 2D kernels shown in Figs. 8, 9, 10, 13, 14, and 15 are available
in the Supplemental Material [36]. While Park and Mani [6] and Hamba [5] showed that the rows
and columns of the 1D wall-normal eddy viscosity are not identical in turbulent channel flow, we
also found that the streamwise row (computed by integrating the 2D eddy viscosity kernel over
the wall-normal direction) is not identical to the reverse of the streamwise column. The nonlocal
influence of the streamwise column is slightly longer than that of the streamwise row and increases
with distance from the wall. Physically, this implies that the mean velocity gradient at a given point
influences the Reynolds stress farther downstream than the Reynolds stress at the same point is
influenced by the mean velocity gradient upstream.

We also found the nonlocal eddy viscosity kernel is much longer in the streamwise direction
than the wall-normal direction, and the nonlocality length in the streamwise direction increases
with distance from the wall. This result is qualitatively expected due to the increase in the mean
streamwise velocity with distance from the wall; however, we quantified this effect in this work. We
then characterized the streamwise nonlocality lengthscale using l2121 = −D1s

2121/D0
2121, where D1s

2121
is the first-order streamwise moment of the eddy viscosity and D0

2121 is the zeroth-order moment of
the eddy viscosity.

For comparison, we also considered a streamwise nonlocality lengthscale based on a history
effect along Lagrangian trajectories, T2121U1, where T2121 = −D1t

2121/D0
2121 and D1t

2121 is the first-
order temporal moment. While l2121 and T2121U1 are correlated, we observed differences, particularly
starting in the buffer layer and into the log layer. For modeling, this difference suggests modification
of the streamwise nonlocality lengthscale associated with the material derivative, e.g., by including
terms of the form a ∂

∂x1
u′

iu
′
j , which may be cross-diffusion terms or a turbulent diffusion term with

spatially varying viscosity.
We then examined the anisotropy of the 2D eddy viscosity kernel. We observed that while their

streamwise extents are similar, D2111 has a larger magnitude than D2121, i.e., the shear component of
the Reynolds stress, u′

2v
′
1, is more sensitive to the streamwise gradient of the mean velocity, ∂V1/∂x1,

than the wall-normal gradient of the mean velocity, ∂V1/∂x2. We also examined the anisotropy in
the eddy viscosity kernels by comparing the normal components of the Reynolds stresses with the
shear component. We found the eddy viscosity kernels have a longer streamwise extent for the
normal components than the shear component.

These observations can be used to inform models of the needed anisotropy. While the Boussinesq
approximation is qualitatively expected to be invalid, we quantified the highly nonlocal streamwise
influence of ∂V1/∂x1 on u′

2v
′
1. We qualitatively expect this to impact flows with an active streamwise

gradient of the mean velocity, ∂V1/∂x1, such as a spatially developing boundary layer. We also
quantified differences in the streamwise extent of the eddy viscosity between various components of
the Reynolds stresses. Reynolds stress transport models can incorporate anisotropy, and the observed
anisotropy between the eddy viscosity kernels for various components of the Reynolds stress tensor
can be used to quantitatively guide the modeling of the turbulence lengthscales or timescales.
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APPENDIX A: DERIVATION OF THE RELATIONSHIP BETWEEN L AND L

The derivation for the relation in Eq. (10) is reproduced from Mani and Park [8] below. The
governing equations, such as the GMT equations in Eqs. (3a) and (3b), can be written as

Lv = s, (A1)

where v is a vector of velocity and pressure, L is a linear operator, and s is the MFM forcing.
Similarly, the averaged equations can be written as

LV = s, (A2)

where V is a vector of mean velocity and mean pressure, L is a linear operator, and s is the MFM
forcing. The averaged operator, L, is unknown, and a relation between L and L is desired. Let
averaging be defined by a projection operator, P, such that

V = Pv. (A3)

While the MFM forcing satisfies the property s = s, s and s may discretely have different dimen-
sions; thus, let E be an extension operator such that

s = Es. (A4)

Rearranging Eq. (A1) and substituting into Eq. (A3) leads to

V = PL−1s = PL−1Es, (A5)

where the definition of the extension operator in Eq. (A4) is used. Further rearrangement,

(PL−1E )−1V = s, (A6)

and comparison with Eq. (A2) leads to the relation for L in Eq. (10).

APPENDIX B: ADJOINT MFM FOR SCALAR TRANSPORT

In this Appendix, we derive adjoint MFM for passive scalar transport. For passive scalar
transport, the generalized eddy diffusivity is a second-order tensor rather than a fourth-order eddy
viscosity tensor. As a simpler example than momentum transport, the derivation for passive scalar
transport more clearly shows the transposition of the indices in the eddy diffusivity tensor.

Discretely, the forced scalar transport equation for a passive scalar c is

Lc = s, (B1)

where

L = ∂

∂t
+ ui

∂

∂xi
− DM

∂2

∂xi∂xi
, (B2)

and where ui is the velocity field from the Navier–Stokes equations in Eqs. (2a) and (2b) and DM is
molecular diffusivity. The mean scalar transport equation is

Lc = s, (B3)

where

L = ∂

∂t
+ Ui

∂

∂xi
− DM

∂2

∂xi∂xi
+ L′

, (B4)
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and where the closure operator is

L′
c = ∂

∂xi
u′

ic
′ = − ∂

∂xi
Di j

∂c

∂x j
, (B5)

and Di j is the discretized eddy diffusivity tensor. The above equation, written out as block matrices
and vectors, is

[
∂

∂x1

∂

∂x2

∂

∂x3

]
⎡
⎢⎢⎣

u′
1c′

u′
2c′

u′
3c′

⎤
⎥⎥⎦ = −

[
∂

∂x1

∂

∂x2

∂

∂x3

]⎡
⎢⎣

D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎥⎦

⎡
⎢⎢⎣

∂
∂x1
∂

∂x2
∂

∂x3

⎤
⎥⎥⎦c, (B6)

where for each i, j ∈ {1, 2, 3}, ∂/∂xi is a N × N block matrix, u′
ic

′ is a N × 1 vector, Di j is a N × N
block matrix, c is a N × 1 vector, and N is the number of degrees of freedom in the averaged space.

For adjoint MFM, we transpose L′
by transposing the operator on the right-hand side of Eq. (B6):

L�′ = −
[

∂

∂x1

∂

∂x2

∂

∂x3

]
⎡
⎢⎢⎣

D�
11 D�

21 D�
31

D�
12 D�

22 D�
32

D�
13 D�

23 D�
33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∂
∂x1
∂

∂x2
∂

∂x3

⎤
⎥⎥⎦. (B7)

The transpose notation � denotes the swapping of the rows and columns of each Di j block matrix,
e.g., continuously D� = D(y, x). We also use the property that with proper boundary conditions,
the transpose of each ∂/∂xi block matrix is −∂/∂xi.

Using IMFM, we can computationally assess the eddy diffusivity operator in Eq. (B7) by solving

L�c† = s†, (B8)

where L� is the transpose of the governing scalar transport operator in Eq. (B2):

L� = − ∂

∂t
− ui

∂

∂xi
− DM

∂2

∂xi∂xi
. (B9)

After relabeling time such that T = t f − t , where t f is the final time:

L� = ∂

∂T
− ui

∂

∂xi
− DM

∂2

∂xi∂xi
. (B10)

The corresponding closure operator is thus

L�′
c† = − ∂

∂xi
u′

ic
†′ = − ∂

∂xi
D�

ji

∂c†

∂x j
. (B11)

Using IMFM, we force elements of the adjoint mean scalar gradient and post-process the adjoint
scalar flux to obtain columns of D�

ji. Continuously,

u′
jc

†′(y, τ ) =
∫

x,t
Di j (x, y, t, τ )

∂c†

∂xi

∣∣∣∣
x,t

dxdt, (B12)

where we have relabeled the indices i ↔ j and the coordinates x ↔ y and t ↔ τ .

APPENDIX C: ROW VERSUS COLUMN COMPARISON FOR Di j21 FOR THE 1D
WALL-NORMAL EDDY VISCOSITY

In general, the rows of the eddy viscosity are not identical to the columns. Figure 3 showed the
asymmetry in row versus column for D2121 at x2 = −0.565. Figure 16 shows the asymmetry in row
versus column for other components of Di j21 at x2 = −0.565. Adjoint MFM results from Fig. 5 are
also plotted for comparison.
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FIG. 16. Comparison of row versus column for Di j21 components using data from Park and Mani [6]. The
corresponding row computed using adjoint MFM is also shown.

APPENDIX D: REFINEMENT AND NUMERICAL SCHEME EFFECTS ON THE 2D NONLOCAL
EDDY VISCOSITY

In this Appendix, we examine the effect of refinement and an upwinding scheme on the quantified
eddy viscosity kernels, particularly on the observed numerical oscillations. For computational ease,
we show the results for an eddy viscosity column from an MFM calculation rather than an eddy
viscosity row from an adjoint MFM calculation; however, we expect the effects of refinement
and numerical scheme to be qualitatively similar between the two cases. Section V C 2 discusses
differences between 2D eddy viscosity columns and rows.

Figure 17 shows a column of the eddy viscosity, D2121(x2, y1 − x1, y2) at y2 = −0.946, similar
to Fig. 9 but with a box size of L1 = 2π for computational ease. The mesh is uniform in the x1

direction with N1 = 144 grid points. This is identical to the box size and grid resolution of Park
and Mani [6] for using MFM to compute the 1D wall-normal eddy viscosity. Figure 17 also shows
the same column of the eddy viscosity under mesh refinement with N1 = 288. While refinement in
the x1 direction reduces the numerical oscillations, it does not eliminate them. As was discussed
in Sec. V C 1, the thin region that needs to be resolved due to the Dirac δ function source term
is proportional to ν/U1 and would require a much finer resolution. Figure 18(a) shows the eddy
viscosity column integrated over the wall-normal direction, where the impact of refinement on the
numerical oscillations is more clearly visible. Other than the oscillations, the overall shape of the
kernel is unchanged with refinement.

Figure 17 also shows the same column of the eddy viscosity with an upwind scheme used for
the streamwise advection of vi in the GMT equation in Eq. (3a). The central differences schemes
for all of the other terms in the GMT equations in Eqs. (3a) and (3b) and all terms in the Navier–
Stokes equations in Eqs. (2a) and (2b) are unchanged. The upwind scheme completely removes the
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FIG. 17. Comparison of D2121(x2, y1 − x1, y2 = −0.946) (column). The top plot shows the original kernel,
the middle plot shows the kernel with mesh refinement in x1, and the bottom plot shows the effect of upwinding
the streamwise advection in the GMT equation.

FIG. 18. Comparison of the effect of (a) mesh refinement in x1 or (b) an upwind scheme on the streamwise
column, computed by integrating the 2D kernels in Fig. 17 over the x2 direction.

094606-26



ADJOINT-BASED COMPUTATION OF NONLOCAL EDDY …

FIG. 19. (a) Streamwise dependence of the wall-normal integrated eddy viscosity kernel at x2 = −0.946.
(b) l2121 = −D1s

2121/D0
2121 at x2 = −0.946 as a function of the the integration limits, η = −h to η = h, where

η = y1 − x1. The lengthscale is computed based on the flat region where the integration limits have little effect
on l2121.

oscillations; however, the additional numerical diffusion caused by the upwind scheme also smooths
out the kernel’s overall shape and reduces the peak. The difference is seen more clearly when the
eddy viscosity column is integrated over the wall-normal direction, as shown in Fig. 18(b). Hence,
we do not use an upwind scheme as it changes the shape of the eddy viscosity kernel.

APPENDIX E: DETAILS FOR COMPUTING THE STREAMWISE NONLOCALITY
LENGTHSCALE

In this Appendix, we include details for computing the streamwise nonlocality lengthscale,
l2121 = −D1s

2121/D0
2121, introduced in Sec. V C 3. Careful treatment of the streamwise integral is

needed to handle domain effects from the periodic x1 direction. Specifically, small but nonzero
values in the tails of the eddy viscosity kernels are heavily weighted by the distance from the peak
in the calculation of the first streamwise moment:

D1s
2121(x2) =

∫∫
(y1 − x1)D2121(x2, y1 − x1, y2)dy1dy2. (E1)

For example, Fig. 19(a) shows the streamwise eddy viscosity kernel after integration over the wall-
normal direction at x2 = −0.946:

D̃2121(x2, y1 − x1) =
∫

D2121(x2, y1 − x1, y2)dy2. (E2)

The streamwise eddy viscosity is periodically repeated to illustrate simulation domain effects.
Ideally, D1s

2121 is calculated for an infinite domain in the x1 direction. However, due to a finite domain
and periodic box effects in the simulations, the streamwise eddy viscosity does not go exactly to zero
[e.g., the mean value between −10 � y1 − x1 � −5 is about 1 × 10−5 in Fig. 19(a)]. These nonzero
values in the tails of the eddy viscosity kernels are weighted by y1 − x1 in the calculation of D1s

2121

and thus have a larger effect on D1s
2121 than on D0

2121. The integration limits become important for
calculating D1s

2121. With asymmetric integration limits, e.g., −10 � y1 − x1 � 3, the nonzero values
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skew the centroid to the left. Hence, we integrate symmetrically from η = −h to η = h, where
η ≡ y1 − x1, and plot l2121 = −D1s

2121/D0
2121, as a function of the integration limits, ±h, where

D1s
2121(x2) =

∫ 1

−1

∫ η=h

η=−h
ηD2121(x2, η, y2)dηdy2, (E3a)

D0
2121(x2) =

∫ 1

−1

∫ η=h

η=−h
D2121(x2, η, y2)dηdy2. (E3b)

Figure 19(b) shows a flat region in l2121 versus h where the integration limits have little effect
on l2121. We use the average in this region, 3 � h � 9, as the streamwise nonlocality lengthscale
estimate, l2121. For x2 = −0.946, the streamwise nonlocality lengthscale is l2121 = 0.42.

APPENDIX F: PERIODIC DOMAIN EFFECTS ON THE 2D NONLOCAL EDDY VISCOSITY

In this Appendix, we investigate domain size effects on the 2D nonlocal eddy viscosity due to
periodic boundary conditions in the x1 direction. In the limit of an infinite domain, we expect the
eddy viscosity kernel to go to zero very far away from the forcing location. The D3321 component
in Fig. 20, shows slight wraparound of the eddy viscosity due to the periodic boundary conditions.
Rather than a longer domain, which is computationally more expensive, we show a comparison
with the shorter domain, e.g., used by Park and Mani [6] for their 1D wall-normal eddy viscosity
calculations, to gain a qualitative understanding of the effect of periodic boundary conditions and a
truncated domain.

Figure 20 shows a comparison between a domain size of L1 = 4π , the domain size used for
Fig. 15, and L1 = 2π , the domain size used by Park and Mani [6]. The color bar for both plots
is truncated to the same maximum color bar values as Fig. 15. While the qualitative shape of
the eddy viscosity is unaffected by the domain size, the eddy viscosity is more negative for
the L1 = 2π domain than the L1 = 4π domain due to wraparound from the periodic boundary
condition. Figure 21 shows the eddy viscosity kernels in Figure 20 integrated over the wall-normal
direction, where the negative shift due to the periodic boundary condition is more apparent. Periodic
superposition of the eddy viscosity kernel integrated over the wall-normal direction for the L1 = 4π

domain approximately results in the eddy viscosity kernel for the L1 = 2π domain as shown in
Fig. 22.

FIG. 20. Comparison of domain size effects on the D3321 component of the 2D eddy viscosity, correspond-
ing to u′

3v
′
3, at x2 = −0.946 (x+

2 ≈ 10). Top: L1 = 4π ; bottom: L1 = 2π .
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FIG. 21. Comparison of domain size effects on the D̃3321 [tilde notation defined in Eq. (E2)] of the
streamwise eddy viscosity, corresponding to the 2D eddy viscosity kernels in Fig. 20 integrated over the
wall-normal direction.

FIG. 22. Periodic superposition of the streamwise eddy viscosity kernel, D̃3321, for the L1 = 4π domain
approximately reproduces D̃3321 for L1 = 2π . In other words, the region from −11 � y1 − x1 � −4.7 for L1 =
4π in Fig. 21 is summed with the region from −4.7 � y1 − x1 � 1.5.
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