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A B S T R A C T

Partial differential equation solvers are required to solve the Navier–Stokes equations for fluid flow. Recently,
algorithms have been proposed to simulate fluid dynamics on quantum computers. Fault-tolerant quantum
devices might enable exponential speedups over algorithms on classical computers. However, current and
foreseeable quantum hardware introduce noise into computations, requiring algorithms that make judicious
use of quantum resources: shallower circuit depths and fewer qubits. Under these restrictions, variational
algorithms are more appropriate and robust. This work presents a hybrid quantum–classical algorithm for the
incompressible Navier–Stokes equations. A classical device performs nonlinear computations, and a quantum
one uses a variational solver for the pressure Poisson equation. A lid-driven cavity problem benchmarks the
method. We verify the algorithm via noise-free simulation and test it on noisy IBM superconducting quantum
hardware. Results show that high-fidelity results can be achieved via this approach, even on current quantum
devices. Multigrid preconditioning of the Poisson problem helps avoid local minima and reduces resource
requirements for the quantum device. A quantum state readout technique called HTree is used for the first
time on a physical problem. Htree is appropriate for real-valued problems and achieves linear complexity in
the qubit count, making the Navier–Stokes solve further tractable on current quantum devices. We compare
the quantum resources required for near-term and fault-tolerant solvers to determine quantum hardware
requirements for fluid simulations with complexity improvements.
1. Introduction

With the rapid development of hardware platforms and algorithms
[1–5], quantum computing has gained enormous attention due to its
potential to solve many large and complex problems faster than clas-
sical methods. The ability of quantum computers to access an expo-
nentially large Hilbert space and exploit unique quantum properties
such as superposition and entanglement are at the heart of many
current appealing quantum algorithms. Quantum computing algorithms
already promise theoretical speed-up for integer factoring [6], un-
structured database search [7], and many other problems of practical
interest [8]. Numerous quantum PDE solvers have been proposed based
on quantum linear system algorithms. The Harrow–Hassidim–Lloyd
(HHL) algorithm [9] claims an exponential speed-up for solving linear
systems compared to classical iterative methods such as conjugate
gradient [10], regardless of the cost of state preparation and readout
the quantum solution encoded in complex amplitudes. HHL and its later

∗ Corresponding author at: School of Computational Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
E-mail address: shb@gatech.edu (S.H. Bryngelson).

improvements [11–14] have been successfully adopted to solve various
linear PDEs [15–20] and aid in the solution of nonlinear ones [21–24].

Quantum algorithms for solving computational fluid dynamics
(CFD) problems have also gained much attention due to their nonlinear
and non-Hermitian nature [25]. Some of these works focus on longer-
term lattice-based methods, including the lattice Boltzmann method
(LBM) and lattice gases [26,26–34], including linearization techniques
for handling advective terms [35–37] or otherwise treating nonlin-
earities [38]. Li et al. [24] claims a potential quantum advantage
for fluid simulation when applying a PDE solver based on quantum
linear system algorithms [17] to Carleman-linearized LBM. Although
they are likewise long-term algorithms, methods based on oracles have
also been proposed [39] and later developed into quantum circuits for
implementation [40]. Oz et al. [41] adopts the quantum PDE algorithm
from [39] to solve 1D Burgers’ equation and Basu et al. [42] further
extend similar approaches to compute dispersal of submarine volcanic
https://doi.org/10.1016/j.compfluid.2024.106507
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data mining, AI training, and similar technologies. 
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tephra. Perhaps closest to the work presented here is that of Lapworth
23], who proposed a hybrid quantum–classical algorithm for solving
ncompressible Navier–Stokes equations based on the SIMPLE (Semi-
mplicit Method for Pressure Linked Equations) algorithm [43] and an

HHL linear solver.
The current noisy-intermediate scale quantum (NISQ) hardware

capability [44] has qubits with meaningfully high error rates. NISQ
methods for solving fluid dynamics problems on actual hardware are
limited, and we focus on them here. Most PDE solves suitable to the
NISQ-era use variational strategies [5,45], including the use of quantum
lgorithms for pressure Poisson solves in the spectral [46,47] and
hysical domain [23,48].

These variational quantum algorithms use shallow parametrized
quantum circuits to prepare a general quantum state, combined with
classical optimizers and a problem-tailored cost function to (iteratively)
prepare the solution. Among them, the Variational Quantum Linear
Solver (VQLS) [49] is a near-term solution, in some cases, for solving
inear systems. Combined with linearization techniques, one can adopt

VQLS to solve simple fluid dynamics problems [50–52]. To address
general nonlinear problems using variational algorithms, Lubasch et al.
53] propose the quantum nonlinear processing unit to evaluate nonlin-

ear cost functions given multiple trial states. Based on that, Jaksch et al.
54] develop the variational quantum computational fluid dynamics

algorithm to solve the viscous Burgers’ equation.
This work proposes a hybrid quantum–classical computing scheme

for solving incompressible Navier–Stokes equations on NISQ hardware.
One can combine classical pressure projection methods and variational
quantum algorithms to solve the pressure Poisson equation. Unlike pre-
vious approaches that focus on fault-tolerant quantum computers, we
perform the calculation on IBM’s superconducting quantum processors
to solve a 2D flow problem. Our results show that preconditioning for
the linear system can improve the trainability and convergence speed
of variational quantum algorithms. The hybrid algorithm requires a
uantum state readout for each simulation time step.

We, in part, address the well-known readout problem [55] via a new
nd efficient quantum state reconstruction method for the real-valued

statevector with linear time complexity [56]. Conventional methods
uch as Quantum State Tomography (QST) [57] reconstruct the full
uantum state as a complex-valued density matrix at the cost of pro-
ecting it into an exponential number of Pauli bases. This improved
ethod instead leverages the fact that many scientific and engineering
roblems involve only real-valued states. Then, one separates the read-
ut procedure into amplitude estimation by measuring in the standard
omputational basis and determining the relative signs between each
mplitude. This approximate readout method, discussed further in
ection 3.3, simplifies the measurement and can be applied to a broad
ange of applications beyond PDE solves. We introduce quantum de-
oherence noise into the hybrid algorithm for the time-dependent PDE
olve. This is a critical component for designing NISQ-type quantum
FD algorithms and has seen little attention in the literature [58,59].

This paper begins with Section 2, reviewing classical CFD solvers for
incompressible Navier–Stokes equations, including Chorin’s projection
method [60] and the SIMPLE algorithm. We introduce the hybrid
quantum–classical scheme for incompressible fluid simulations on NISQ
devices in Section 3. Section 4 summarizes the simulation and hardware
results for a 2D lid-driven cavity flow. We discuss quantum decoherence
noise modeling and the error mitigation and suppression methods we
adopt in our hybrid approach. We further conduct resource estimation
o analyze the hardware requirement for solving the same problem

with the HHL algorithm. Section 5 discusses the presented method’s
limitations and possible extensions.

2. Background
2 
2.1. The incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations are a set of coupled
nonlinear PDEs that describe the conservation of mass and momentum.
In dimensionless form, the mass conservation equation is
∇ ⋅ 𝒖 = 0, (1)

and the momentum conservation equation is
𝜕𝒖
𝜕 𝑡 + (𝒖 ⋅ ∇)𝒖 = −1

𝜌
∇𝑝 + 1

Re∇
2𝒖, (2)

where 𝒖 = (𝑢, 𝑣) is the flow velocity vector, 𝜌 is the density, 𝑝 is the
ressure, and Re is the Reynolds number (ratio of inertial to viscous
ffects).

2.2. Pressure projection methods for solving incompressible flow

The main difficulty of solving the incompressible Navier–Stokes
equations is often the coupling of velocity and pressure under incom-
pressibility constraint (1). To transform the governing equations and
avoid the pressure–velocity coupling, derived quantities such as the
stream function and vorticity could be used instead of the primitive
variables {𝑢, 𝑣, 𝑝}. However, this approach poses difficulties in geometry
modeling and setting the boundary conditions for 3D problems.

Two numerical schemes for solving viscous incompressible flow
quations are pressure-based projection methods and artificial com-
ressibility [61]. The former approach decouples the velocity and

pressure calculation using a fractional step or pseudo-time-stepping.
Chorin’s projection method [60] is a well-known pressure projection
method, which follows as
𝒖𝑛+1 − 𝒖𝑛

𝛥𝑡
= −1

𝜌
∇𝑝𝑛+1 − (𝒖𝑛 ⋅ ∇) 𝒖𝑛 + Re∇2𝒖𝑛, (3)

with explicit Euler time discretization and 𝒖𝑛 the velocity at 𝑛th
time step. The time-step 𝛥𝑡 is chosen following the CFL criterion:
𝛥𝑡

(
∑

𝑘 ‖𝒖‖max∕𝛥𝑥𝑘
)

≤ 1, where 𝛥𝑥𝑘 is the grid spacing in each spatial
dimension 𝑘. The first step is solving for an intermediate velocity
𝒖∗ using the discretized momentum equation without the pressure
gradient term (∇𝑝𝑛+1 = 0):
𝒖∗ − 𝒖𝑛
𝛥𝑡

= − (𝒖𝑛 ⋅ ∇) 𝒖𝑛 + Re∇2𝒖𝑛. (4)

This velocity field 𝒖∗ is usually not divergence-free.
In the second step, the pressure Poisson equation is derived by

imposing incompressibility constraint (1) on the velocity at the next
time-step

∇2𝑝𝑛+1 =
𝜌
𝛥𝑡

∇ ⋅ 𝒖∗. (5)

This projection step is achieved by solving the Poisson equation and is
ften more computationally expensive than other steps. Once we solve
he Poisson problem, we correct the velocity from 𝒖∗ to the next time
tep as

𝒖𝑛+1 = 𝒖∗ − 𝛥𝑡
𝜌
∇𝑝𝑛+1. (6)

We iterate the above steps until the residual 𝑟 converges to a tolerance
hreshold, here chosen to be 𝜖 = 10−5, so our results are insensitive to

this particular choice. Residual measures how far the current solution
is from satisfying the discrete form of the governing equations and
is widely used as a convergence criterion in CFD. For steady-state
problems, one could also monitor the root mean square difference
between two consecutive time steps

𝑟RMS =

√

∑

𝑖𝑗 |𝜙
𝑛+1
𝑖,𝑗 − 𝜙𝑛𝑖,𝑗 |

2

√

∑

𝑖𝑗 |𝜙
𝑛
𝑖,𝑗 |

2
, (7)

where the monitored physical quantity 𝜙 are the velocities (𝑢, 𝑣) or the
pressure 𝑝.
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Fig. 1. We show a schematic of the hybrid quantum–classical scheme for solving incompressible flow problems. (a) Velocity contour of the 2D lid-driven cavity flow at Re = 1000.
b) A staggered grid allays the well-known checkerboard pressure problem. The pressure is stored at the cell center, and the velocities are stored at the cell interfaces. (c) Calculate
ntermediate velocities and proceed to the classical computer’s next fractional time step. (d) Solve the Poisson equation with proper preconditioning on a quantum computer and

obtain velocity corrections. We iterate until the convergence criterion reaches the threshold 𝜖.
a

t
t
c
b

q
c

e
m

Different pressure projection schemes exist, such as the SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations) algorithm [43].
Compared to Chorin’s projection method, the SIMPLE algorithm uses
semi-implicit time-stepping and the velocity correction in (4) accounts
for the pressure solution from the last step. Both methods can be in-
tegrated into our proposed hybrid quantum–classical scheme, see Lap-

orth [23] for further discussion.
Another common approach is artificial compressibility or pseudo-

compressibility methods [62], where one adds a time-derivative of the
pressure term to the continuity equation (1) as
𝜕 𝑝
𝜕 𝑡 + 𝛽 ∇ ⋅ 𝒖 = 0, (8)

where 𝛽 is the artificial compressibility. Such a formulation relaxes the
strict requirement to satisfy mass conservation in each step, and the im-
plicit schemes developed for compressible flows can be directly imple-
mented. However, this method is computationally expensive for tran-
sient problems due to dual time-stepping since the pressure field has to
go through one complete steady-state iteration cycle in each time step.

2.3. Quantum solutions for the pressure Poisson equation

This study focuses on pressure projection schemes. We transform the
pressure Poisson equation into a large-scale system of linear algebraic
equations with spatial discretization

𝑨|𝑝⟩ = |𝑏⟩, (9)

where 𝑨 is a sparse Laplacian matrix that only depends on bound-
ary conditions and discrete formats (finite difference or finite volume
method), |𝑝⟩ is a vector composed of pressures on all discrete grids,
and |𝑏⟩ is a vector containing intermediate velocity divergences and

boundary conditions. We assume the mesh is Cartesian when using the g

3 
staggered grid in Fig. 1(b), and one can further extend our method by
adopting Rhie–Chow interpolation [63].

Among the family of variational quantum algorithms, the Vari-
tional Quantum Eigensolver (VQE) [64] and Variational Quantum

Linear Solver (VQLS) [49] are promising candidates for solving linear
systems on NISQ devices. These two approaches both solve the quan-
um linear system problem 𝑨|𝑥⟩ = |𝑏⟩ by encoding the solution as
he ground-state |𝜓𝑔⟩ = |𝑥⟩ of a problem Hamiltonian 𝑯 . VQE was
reated to determine the ground-state energy of chemistry molecules
ased on the Rayleigh–Ritz variational principle [65] and later adopted

to solve Poisson equations [66,67]. Given the Hamiltonian mapped into
the Pauli basis

𝑯 =
𝐿ℎ
∑

𝑙=1
𝛼𝑙𝑯 𝑙 , (10)

where each Hermitian matrix 𝑯 𝑙 is decomposed in the format of 𝑁-
ubit Pauli strings 𝑯 𝑙 ∈ ⟨𝑃1 ⊗ 𝑃2 ⋯⊗ 𝑃𝑁 ∶ 𝑃𝓁 ∈ {𝐼 , 𝑋 , 𝑌 , 𝑍}⟩ and each
oefficient 𝛼𝑙 is a real number, VQE iteratively prepares the solution

with a parameterized quantum circuit (PQC) 𝑈 (�⃗�) by minimizing the
xpectation value ∑

𝑙 𝛼𝑙⟨0|𝑈†(�⃗�)𝑯 𝑙𝑈 (�⃗�)|0⟩ =
∑

𝑙 𝛼𝑙⟨𝑯 𝑙⟩ as the energy
easure.

Fig. 2(a) illustrates the VQE quantum circuit to measure a single
term ⟨𝑯 𝑙⟩. To compute the total energy inside each iteration, VQE
executes 𝐿ℎ circuits. Thus, the total runtime can be estimated as 𝑡VQE =
𝑁itr.𝐿ℎ𝑡circ., where 𝑁itr. is the number of iterations for VQE to reach
ground state and 𝑡circ. is the hardware runtime for each circuit. The
pre-measurement rotation gates in Pauli basis (𝑙) ∈ {𝐻 , 𝐻 𝑆†} change
the measurement basis for each qubit from computational 𝑍-basis to 𝑋
and 𝑌 , respectively. 𝐻 (Hadamard gate) and 𝑆† (−𝜋∕2 phase gate) are
two basic quantum gate operations. For example, the pre-measurement
rotation gate sequence reads as (𝑙)

1 ⊗(𝑙)
2 ⊗(𝑙)

3 = 𝐼 ⊗ 𝐻 ⊗ 𝐻 𝑆†

iven 𝑯 = 𝑍 ⊗ 𝑋 ⊗ 𝑌 . Notice these pre-measurement rotations
𝑙
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Fig. 2. Quantum circuit structure for the (a) VQE and (b) VQLS algorithms.
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only consist of single-qubit gates when 𝑯 𝑙 is decomposed in the Pauli
asis. Decomposing 𝑯 𝑙 into another basis, such as {𝜎+, 𝜎−}, where
± = (𝑋 ± 𝑖𝑌 )∕2, could lead to a more efficient decomposition such

that 𝐿ℎ = (poly (𝑁)) comparing to the worst case scenario for Pauli
decomposition of a dense matrix 𝐿ℎ = (4𝑁 ). Consequently, the pre-
measurement rotation circuit is more complex and contains multi-qubit
gates [66]. Last, one computes the expectation value ⟨𝑯 𝑙⟩ by measuring
in the standard 𝑍-basis and post-process the probabilities

⟨𝑯 𝑙⟩ =
∑

𝑧∈{0,1}𝑁
(−1)𝑤(𝑧)𝑝(𝑧), (11)

where 𝑝(𝑧) is the probability of being in the state |𝑧⟩ = |𝑧1𝑧2 ⋯ 𝑧𝑁 ⟩ with
𝑖 ∈ {0, 1} and 𝑤(𝑧) is the Hamming weight of the binary string 𝑧.

VQLS inherits the same variational principle, though includes ex-
plicit construction of a 𝑁-qubit circuit 𝑉 to load |𝑏⟩ = 𝑉 |0⟩⊗𝑁 and
dditional quantum subroutines such as the Hadamard test to estimate
he cost function 𝐶(�⃗�) = 1 − |⟨𝑏|𝛹⟩|2, where |𝛹⟩ = 𝑨|𝜓⟩∕

√

⟨𝜓|𝑨†𝑨|𝜓⟩
and |𝜓⟩ = 𝑈 (�⃗�)|0⟩⊗𝑁 is the quantum iterative solution prepared using
the same parameterized quantum circuit 𝑈 (�⃗�) as in VQE. Here, |⟨𝑏|𝛹⟩|2

is the cosine similarity between two vectors |𝑏⟩ and |𝛹⟩. Hence, the cost
function has an operational meaning similar to the absolute residual
‖|𝑏⟩ − 𝑨|𝜓⟩‖. It is assumed that matrix 𝑨 is decomposed into a linear
combination of unitaries (LCU) 𝑨 =

∑𝐿𝑎
𝑙=1 𝑐𝑙𝑨𝑙, where each 𝑨𝑙 is a

unitary matrix and 𝑐𝑙 is a complex number. The VQLS cost function
follows as

𝐶(�⃗�) = 1 −
∑

𝑙 ,𝑙′ 𝑐𝑙𝑐∗𝑙′ ⟨0|𝑈†(�⃗�)𝑨†
𝑙′𝑉 |0⟩⟨0|𝑉 †𝑨𝑙𝑈 (�⃗�)|0⟩

∑

𝑙 ,𝑙′ 𝑐𝑙𝑐∗𝑙′ ⟨0|𝑈†(�⃗�)𝑨†
𝑙′𝑨𝑙𝑈 (�⃗�)|0⟩

. (12)

Last, one repeats the Hadamard test (𝐿2
𝑎) times to compute the real

nd imaginary parts of the above terms.
The VQLS circuit for computing a single numerator term

e⟨0|𝑉 †𝑨𝑙𝑈 (�⃗�)|0⟩ is illustrated in Fig. 2(b) given the initial state |𝜓0⟩ =
|0⟩⊗𝑁 . This circuit represents the Hadamard test using one ancilla
qubit initialized in |0⟩ and a controlled unitary sandwiched with two
Hadamard gates. Then, one can calculate Re⟨𝜓0|𝑉 †𝑨𝑙𝑈 (�⃗�)|𝜓0⟩ = 𝑝(0) −
𝑝(1), where 𝑝(0) and 𝑝(1) are the probabilities of measuring 0 and 1 in
he ancilla qubit. The shaded extra 𝑆† gate appears only when estimat-
ng imaginary parts. To evaluate denominator terms
0|𝑈†(�⃗�)𝑨†

𝑙′𝑨𝑙𝑈 (�⃗�)|0⟩ in (12), one needs to modify the circuit by ap-
plying 𝑈 (�⃗�) in the non-controlled way and replacing 𝑉 † circuit block
with 𝑨†

𝑙′ . Although VQLS presents as a natural solver for (9), it requires
meaningfully more quantum resources than VQE on NISQ devices (due
to extra controlled gates in Hadamard test) for general engineering
problems [51]. For example, the VQLS circuit runtime for our problem
of interest exceeds the coherence time of NISQ hardware. Section 4.4
provide a detailed quantum resource estimation comparison between
these variation techniques.
4 
3. Hybrid quantum–classical scheme

3.1. Overview

We propose a hybrid quantum–classical scheme for solving the
ncompressible Navier–Stokes problem. This scheme combines the pro-

jection method with the VQE linear system algorithm. Fig. 1 illustrates
ur workflow. We compute the intermediate velocity field 𝒖∗ on a clas-

sical computer. We form the discretized Poisson equation and encode
the solution as the ground state of an effective Hamiltonian 𝑯 as

𝑯 = 𝑨†(𝐼 − |�̂�⟩⟨�̂�|)𝑨, (13)

where 𝑨† is the Hermitian transpose of the 𝑨 operator and |�̂�⟩ =
𝑏⟩∕‖𝑏‖. We use a parameterized quantum circuit 𝑈 (�⃗�) to iteratively
repare the ground state of this Hamiltonian |𝜓(�⃗�)⟩ = 𝑈 (�⃗�)|𝜓0⟩. By
ptimizing over the parameters �⃗� = (𝜃1,… , 𝜃𝑚) to minimize the cost
unction

arg min
�⃗�

𝐶(�⃗�) = arg min
�⃗�

⟨𝜓(�⃗�)|𝑯|𝜓(�⃗�)⟩, (14)

we obtain an approximate solution |𝜓(�⃗�opt.)⟩ ≈ |𝜓𝑔⟩ when 𝐶(�⃗�opt.) ≤ 𝛾.
is the termination condition for the optimization loop similar to

he residual tolerance in classical iterative linear solvers. The other
common termination condition for VQE is specifying the maximum
number of iterations.

To retrieve the pressure solution |𝑝⟩, we require a normalization
actor 𝑝 to scale the quantum solution such that 𝑝|𝜓(�⃗�opt.)⟩ ≈ |𝑝⟩.
he normalization is computed via the ratio of the largest element of
|𝜓(�⃗�opt.)⟩ and |�̂�⟩. The cost function 𝐶(�⃗�) has an operational meaning
f distance measure between the exact and prepared solutions. One can
how the following lower bound holds in general [49],

𝐶(�⃗�) ≥ 1
4𝜅2

Tr2
[

|

|

|

𝜓(�⃗�opt.)
⟩⟨

𝜓(�⃗�opt.)
|

|

|

− |

|

|

𝜓𝑔
⟩⟨

𝜓𝑔
|

|

|

]

, (15)

where Tr [ ⋅ ] is the trace distance and 𝜅(𝑨) ∶= ‖𝑨‖

‖

‖

‖

𝑨−1‖
‖

‖

is the matrix
condition number. The parametrized circuit 𝑈 (�⃗�) is decomposed as a
chain of unitary operators

𝑈 (�⃗�) =
𝐿cir.
∏

𝓁=1
𝑈𝓁(𝜃𝓁)𝑊𝓁 , (16)

where 𝑈𝓁(𝜃𝓁) = exp(−𝑖𝜃𝓁∕2𝑃𝓁) with the Pauli operator 𝑃𝓁 ∈ {𝑋 , 𝑌 , 𝑍}
nd 𝑊𝓁 denotes a fixed (non-parameterized) operator such as two-qubit
ates that provide entanglement.

3.2. Preconditioning the linear system

Preconditioning techniques are widely used in iterative sparse linear
system solvers. The common practice is finding a preconditioner 𝑴−1

and applying it to the original linear system as

𝑴−1𝑨
⏟⏟⏟

|𝑥⟩ = 𝑴−1
|𝑏⟩

⏟⏟⏟
, (17)
�̃� |�̃�⟩



Z. Song et al. Computers and Fluids 288 (2025) 106507 
Fig. 3. Comparison of the (a) original optimization landscape and (b) preconditioned landscape. The preconditioned landscape (b) has fewer local minima and thus exhibits better
trainability. The global minima are located at the center (0, 0) in this illustration. PC𝑗 is the 𝑗th principal component.
such that the matrix condition number of the newly assembled matrix
is well behaved 𝜅(�̃�)≪ 𝜅(𝑨).

This technique reduces computational complexity since classical
sparse linear solvers typically have a √

𝜅 dependence, compared to the
𝜅2 dependence for the HHL algorithm and 𝜅 dependence for more ad-
vanced quantum linear systems algorithms based on discrete adiabatic
theorem [68].

Clader et al. [69] introduced preconditioning to quantum linear
system algorithms via a sparse approximate inverse (SPAI) method,
where 𝑴−1 is constructed by solving a least-squares procedure for each
row of the matrix 𝑨 such that ‖𝑴−1𝑨 − 𝐼‖2𝐹 is minimized. For NISQ
linear solvers, Hosaka et al. [70] showed that using the incomplete LU
factorization as a preconditioning technique can aid VQLS by preparing
a higher fidelity solution with fewer iterations in the optimization loop.
The preconditioning involves an LU factorization of 𝑨 (lower and upper
triangular): 𝑨 = 𝑳𝑼 . One can then drop certain elements in 𝑳 and 𝑼
based on the sparsity pattern of 𝑨 to construct the preconditioner as
𝑴 = �̃��̃� ≈ 𝑨.

The present hybrid quantum–classical scheme sees an improvement
over ILU via a smoothed aggregation algebraic multigrid (AMG) pre-
conditioner. The AMG used herein constructs a hierarchy 𝑉 -cycle of
progressively coarser grids, where smooth error components are asso-
ciated with low-frequency eigenmodes of matrix 𝑨 that are otherwise
challenging to eliminate on the fine grid. The procedure groups fine-
grid points into aggregates to form the coarse grid and then applies
a smoother to improve the interpolation between the fine and coarse
grids. Coarse-level operators are created using Galerkin projection.
An appropriate multigrid method accelerates the linear solver conver-
gence so long as the operator is elliptic positive definite. With AMG
preconditioning the effective Hamiltonian is
𝑯 = �̃�

†
(𝐼 − |�̃�⟩⟨�̃�|)�̃�. (18)

Multigrid methods have been recently adopted to variational ansatz
design to improve solution quality [71] and enhance trainability [58].

Here, we use AMG preconditioning to improve the trainability of
variational algorithms by reducing the local traps illustrated in Fig. 3.
In Fig. 3, the optimization landscape is visualized based on principal
component analysis (PCA) of a successful optimization trajectory using
the ORQVIZ package [72]. The scale of the landscapes is normalized by
a factor of ‖𝑯‖ and ‖𝑯‖ for visualization purposes, but not repeated
for the actual simulations. We only need to marshal the preconditioner
once when using Chorin’s projection method as 𝑨 is the same for all
time steps. For (semi-)implicit time-stepping tools, such as the SIMPLE
algorithm, preconditioning can introduce overhead as 𝑴−1 must be
determined separately for each pseudo-time-step.

3.3. Efficient quantum state readout

As discussed in Section 1, an efficient readout method is key for
our (or perhaps any current) hybrid quantum–classical algorithm. We
5 
Table 1
Runtime (seconds) comparison between two readout methods on 27-qubit
ibmq_kolkata.

Method Qubits: 2 3 4 5 6

QST 3 10 93 310 939
HTree 11 12 13 14 17

introduce the Hadamard tree method (HTree) to address this bottle-
neck [56]. Standard quantum state tomography (QST) reconstructs the
density matrix 𝜌 of arbitrary quantum state with complex amplitudes.
So, QST requires collecting (3𝑁 ) expectation values by measuring each
qubit with the Pauli basis {𝑋 , 𝑌 , 𝑍}, where 𝑁 is the number of qubits
involved. Reconstructing a physical quantum state satisfying Tr [𝜌] =
1 requires a maximum likelihood post-processing technique. HTree
instead reconstructs real-valued quantum states |𝜓⟩ =

∑

𝑗 𝜓𝑗 |𝑗⟩, 𝜓𝑗 ∈
R by sampling the magnitude of state amplitude |𝜓𝑗 | according to
measurement distribution |𝜓𝑗 |

2. Hadamard gates on the (𝑁 − 𝑘)-th
qubits determine the relative sign between amplitudes 𝜓𝑗 and 𝜓𝑗+2𝑘 .
We compare the runtime- between these two readout methods on real
quantum hardware and summarize the results in Table 1. We use the
Qiskit Experiments package to implement QST [73].

4. Results

4.1. CFD benchmark

Fig. 4 shows the 2D lid-driven cavity problem. We consider a square
domain with an edge length 𝐿, and the upper lid moves with velocity
𝑈 in the horizontal (𝑥) direction. The other three walls are solid and
entail a Dirichlet boundary condition on velocity 𝒖||

|𝜕 𝛺 = 0. The fluid
is initially quiescent with 𝑢 = 𝑣 = 0. We consider a viscous fluid
with kinematic viscosity 𝜈 and seek solutions to the incompressible
Navier–Stokes equations (1) and (2). Solutions are characterized by the
Reynolds number Re = 𝑈 𝐿∕𝜈.

We discretize the domain via a uniform staggered grid with 𝑛𝑘 grid
points in each spatial dimension 𝑘. The computational domain thus
comprises 𝑛2𝑘 equally spaced points with grid spacing 𝛥𝑥𝑘 = 𝐿∕(𝑛𝑘 + 1).
For a scale resolved simulation, the number of grid points 𝑛𝑘 can
be determined by resolving the Kolmogorov length scale 𝜂 as 𝐿∕𝜂 ∼
(Re3∕4). We conduct simulations at Re = 100 and verify the solution
against the established benchmark of Ghia et al. [74].

4.2. Simulation results

In this section, we conduct numerical simulations that apply the
hybrid quantum–classical CFD solver to simulate lid-driven cavity
flow. The parameterized quantum circuits (PQC) 𝑈 (�⃗�), also called the
ansatz, used in this study is a specific type of hardware-efficient ansatz
(HEA) [75], which consists of the gate set  ∈ {𝑅 (𝜃 ),CNOT}.
gate 𝑦 𝓁
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Fig. 4. Lid-driven cavity flow at Re = 100 over a 100 × 100 grid. (a) Velocity magnitude ‖𝒖‖ =
√

𝑢2 + 𝑣2 at 𝑡 = 10. (b) Benchmark results and a comparison against a reference
solution. The horizontal curve is 𝑦-direction velocity 𝑣 along the horizontal line through the geometric center of the cavity at 𝑦 = 0.5. The vertical curve compares the 𝑥-direction
velocity 𝑢 along the vertical line through the geometric center of the cavity at 𝑥 = 0.5 with the reference values of Ghia et al. [74]. The convergence criterion is 𝑟RMS ≤ 10−5.
Fig. 5. Preconditioning helps VQE converge faster to solve the linear system on a
5 × 5 mesh. The data are averaged from five VQE runs with random initialization.
The PQC is chosen to be the real-amplitude ansatz with five repetitions. The black line
shows results without preconditioning. ILU is an incomplete LU factorization and AMG
is algebraic multigrid. The number of iterations reported here could differ from other
literature recordings of the number of function evaluations. For the L-BFGS-B optimizer,
each iteration requires about 30 evaluations to approximate gradient information.

We provide a more detailed analysis to design PQC given hardware
resource constraints in Appendix. All simulations, including optimiza-
tion loops, are conducted using Qiskit [76] as an open-source toolkit
for quantum computing.

We first solve the pressure Poisson problem for Re = 100 at 𝑡 = 6
using the Qiskit statevector simulator. The preconditioning effect is
analyzed by repeating the same experiment multiple times with random
initial parameters 𝜃𝓁 ∈ [−𝜋 , 𝜋]. We report the convergence history of
VQE to prepare the ground state solution with fidelity 𝐹 ≥ 99% in
Fig. 5. The state fidelity 𝐹 is a cosine distance measure between the
true ground-state |𝜓𝑔⟩ and prepared state |𝜓(�⃗�opt.)⟩
( ) 2
𝐹 |𝜓(�⃗�opt.)⟩, |𝜓𝑔⟩ = |

|

|

⟨𝜓(�⃗�opt.)|𝜓𝑔⟩
|

|

|

. (19)

6 
Table 2
Scaling analysis of two preconditioners with different mesh sizes at Re = 100 and 𝑡 = 6,
where 𝑁VQE is the number of qubits required for VQE to prepare the solution and 𝛥𝑡
is the time step size.

Mesh 𝑁VQE 𝛥𝑡 𝜅(𝑨) 𝜅(�̃�ILU) 𝜅(�̃�AMG) 𝛥(𝑯) 𝛥(𝑯 ILU) 𝛥(𝑯AMG)

5 × 5 4 0.2 4.43 × 102 8.01 𝟏.𝟏𝟑 11.35 14.89 𝟏𝟓.𝟑𝟕
9 × 9 6 0.1 3.98 × 103 51.51 𝟏.𝟑𝟑 10.32 13.83 𝟏𝟓.𝟐𝟖
17 × 17 8 0.05 3.26 × 104 2.94 × 102 𝟐.𝟒𝟔 9.97 12.17 𝟏𝟓.𝟐𝟔
33 × 33 10 0.01 2.62 × 105 1.53 × 103 𝟕.𝟑𝟓 9.12 10.75 𝟏𝟒.𝟖𝟗
65 × 65 12 0.005 2.10 × 106 7.56 × 103 𝟑𝟑.𝟔𝟖 7.70 9.89 𝟏𝟒.𝟐𝟏

Among the different choices of optimizers, we use the L-BFGS-B opti-
mizer [77], which we find to consistently outperform other optimizers,
like COBYLA and Adam, for statevector simulation.

Fig. 5 show that a proper preconditioner can reduce VQE iterations.
We observe the correlation between cost value and other standard
distance measure metrics, which include the state fidelity 𝐹 as 𝐶(�⃗�) ≈
1 − 𝐹 and the 𝓁2 norm as 𝐶(�⃗�) ≈ ‖|𝜓(�⃗�opt.)⟩ − |𝜓𝑔⟩‖

2
2 when the AMG

preconditioner is applied. The preconditioner aids in the preparation of
a higher-fidelity solution by enlarging the spectral gap

𝛥(𝑯) = log10
|

|

|

𝜆1(𝑯)||
|

|

|

|

𝜆0(𝑯)||
|

, (20)

where 𝜆0 is the smallest eigenvalue of 𝑯 and 𝜆1 is the second smallest
eigenvalue. A large spectral gap means more space for the classical
optimizer to explore the solution once 𝐶(�⃗�) ≤ 𝜆1. We further analyze
the effect of preconditioners at different mesh sizes in Table 2. The
AMG preconditioner consistently creates a larger spectral gap and keeps
the matrix condition number low.

Next, we will consider more realistic cases, including finite sampling
noise and quantum decoherence noise. We repeat the same experiment
on the Qiskit QASM simulator and switch to the COBYLA optimizer
due to its noise resilience performance. Fig. 6 shows the convergence
history. In the noise-free simulation, VQE can converge to an optimal
cost 𝐶(�⃗�opt.) of accuracy up to 10−4 and a state fidelity of 99.99% under
700 iterations. If we let the optimizer keep going until 1600 iterations,
it will converge to 𝐶(�⃗�opt.) = 4 × 10−8 with state infidelity 1 − 𝐹 =
4.14 × 10−8. When the state fidelity is higher than 𝐹 ≥ 99.99%, we will
report the state infidelity 1 −𝐹 instead. The sampling-based simulation
limits this accuracy to 𝐶(�⃗�opt.) ≥ 1∕

√

𝑁𝑠, where 𝑁𝑠 is the shot number.
Due to the probabilistic nature of quantum computing, one needs to
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Fig. 6. (a) Effect of quantum/classical noise on solving the 4-qubit Poisson problem at 𝑡 = 6 using VQE. (b) Tomography result of the state 𝜌noisy = HTree
(

|𝜓(�⃗�opt.)⟩
)

prepared by
noisy training on Fake_Kolkata, where HTree(⋅) represent the efficient readout method discussed in Section 3.3.
𝑍

d

q
b

(

p

𝑝

collect many samples to recover the statistical information stored in
he quantum state. This limitation is common for variational algorithms
ue to the accuracy required for the prepared ground state, though one
an mitigate this via more samples. We last consider quantum noise
rom a real quantum device, the 27-qubit ibmq_kolkata with past

calibration data. This experiment results in a solution with state fidelity
96.89% compared to the true ground state solution. We repeat the
same noisy VQE experiment multiple times and it typically leads to
3% ∼ 5% relative forward errors for solving the linear system at a single
time-step.

4.2.1. Noise modeling on quantum computer
Two main categories of quantum noise can be modeled at the circuit

level, ignoring all hardware defects: coherent error and decoherence
rror. The former can be caused by miscalibration of the hardware

and leads to an undesired over-rotation applied to the circuit 𝑈 (�⃗�) →
(�⃗� + 𝛿�⃗�), where 𝛿�⃗� sampled from a Gaussian distribution. Notably,
ariational quantum algorithms are insensitive to such coherent errors

by design [45]. Unwanted interactions between the quantum system
nd the environment cause decoherence errors. These errors are the

most problematic on NISQ hardware and could lead to training issues
for VQE. Thus, we focus on modeling them in this section. Deco-
herence errors can no longer be described as unitary quantum gates
and are typically treated as quantum channels in the operator-sum
representation [78]

 (𝜌) =
∑

𝑘
𝐸𝑘𝜌𝐸

†
𝑘 , (21)

where {𝐸𝑘} are Kraus operators satisfying the completeness condition
𝑘 𝐸

†
𝑘𝐸𝑘 = 𝐼 and 𝜌 = |𝜓⟩⟨𝜓| is the density matrix of a quantum state.

ypical decoherence errors include the single qubit thermal relaxation
rror TR(⋅) describing the effects of energy dissipation (𝑇1 process)
nd dephasing (associated with 𝑇2 process) caused by interaction with
he environment at low system temperature

TR(𝜌) = (1 − 𝑝𝑍 − 𝑝reset)𝜌 + 𝑝𝑍𝑍 𝜌𝑍† + 𝑝reset

×
(

(|0⟩⟨0|)𝜌(|0⟩⟨0|)† + (|0⟩⟨1|)𝜌(|0⟩⟨1|)†) , (22)

where 𝑝𝑍 is the probability of dephasing and 𝑝reset stands for the prob-
ability of relaxation by projecting to the |0⟩ state. The other common
ecoherence error is the 𝑁-qubit depolarizing channel as a white noise
y symmetrically implementing Pauli noises
7 
 (𝑁)
D (𝜌) = (1 − 𝑝D)𝜌 +

𝑝D
4𝑁 − 1

3
∑

𝑖,𝑗 ,𝑘,…,𝑛=0

(

𝑃𝑖 ⊗ 𝑃𝑗 ⊗⋯𝑃𝑛
)

𝜌

×
(

𝑃𝑖 ⊗ 𝑃𝑗 ⊗⋯𝑃𝑛
)† , (23)

where 𝑝D stands for the probability of such an error happening, and
each 𝑃𝓁 is chosen from the Pauli group as 𝑃0 = 𝐼 , 𝑃1 = 𝑋 , 𝑃2 = 𝑌 , 𝑃3 =

such that there are 4𝑁 − 1 terms in the summation.
Given a generic circuit in Fig. 7, our noise model consists of single-

and two-qubit gate errors and single-qubit readout errors. The single-
qubit gate errors 1q(𝜌) = TR◦

(1)
D (𝜌) are composed of a single-qubit

epolarizing error channel and a single-qubit thermal relaxation error.
Two-qubit gate errors 2q(𝜌) = (TR ⊗TR)◦

(2)
D (𝜌) consist of a two-

ubit depolarizing error and a single-qubit thermal relaxation error on
oth qubits. Single-qubit readout error readout flips the classical bit

value based on experimentally determined probabilities, Errormea. =
𝑝0→1 + 𝑝1→0)∕2. 𝑝0→1 stands for the probability of preparing a series

of |0⟩ states on hardware but measured as |1⟩. To determine the
robability of errors in TR, we use the gate operation time 𝑡g and

hardware 𝑇1∕𝑇2 coherence time to estimate 𝑝reset = 1 − 𝑒−𝑡g∕𝑇1 and
𝑍 = (1 − 𝑝reset)(1 − 𝑒−𝑡g∕𝑇2+𝑡g∕𝑇1 )∕2. These data are included in the

backend properties through calibrations (see Table 3) and used to build
a fake backend such as Fake_Kolkata in Fig. 6. The probability of
the depolarizing error 𝑝D is set such that the combined average gate
infidelity matches the value from backend properties Error1q (Error2q).

4.3. Quantum hardware results

We study the proposed hybrid quantum–classical scheme on IBM’s
superconducting quantum hardware. Considering the noisy nature of
quantum hardware, we relax the convergence criterion of the lid-driven
cavity flow problem to 𝑟max ≤ 10−4, where

𝑟max = max
𝜙∈{𝑢,𝑣}

|

|

|

𝜙𝑛+1𝑖,𝑗 − 𝜙𝑛𝑖,𝑗
|

|

|

. (24)

This maximal residual is strictly larger than the root mean square
difference of (7). We are interested in two questions: (i) What is the
minimum tolerable noise to reach the steady-state solution 𝑟max ≤ 10−4

for the lid-driven cavity benchmark using the proposed hybrid scheme,
and (ii) whether current NISQ hardware meets the requirement. To
address (i), we run VQE on a statevector simulator to obtain optimal
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Fig. 7. Modeling quantum decoherence noise on a generic circuit structure. This work does not model the idling error shown in the shaded gray area. Executing two-qubit gates
adjacent to idling qubits could lead to crosstalk and performance degradation. One can adopt dynamical decoupling (DD) as an error suppression technique to tackle idling errors
on hardware.
Table 3
Calibration data of the IBM quantum computers used in this study. The data are averaged among all the qubits.
Backend Qubits 𝑇1 (μs) 𝑇2 (μs) Error1q Error2q Errormea. 𝑡2q (ns) 𝑡mea. (ns)

ibmq_kolkata 27 103 57 2.55 × 10−4 8.93 × 10−3 1.22 × 10−2 452 640
ibm_sherbrooke 127 263 184 2.17 × 10−4 7.61 × 10−3 1.29 × 10−2 533 1244
ibm_torino 133 168 132 3.08 × 10−4 3.40 × 10−3 1.89 × 10−2 124 1560
E

l

s
t

t
q
m

i

parameters �⃗�opt. and readout the state |𝜓noisy⟩ from real hardware or
oisy simulators using HTree readout method. One could, in principle,
onduct end-to-end hardware experiments by including VQE on-device
raining. However, this will introduce extra error sources as the hard-
are noise behavior drifts with time, and on-device training requires
rohibitively long simulation times.

We present the results with a 4-qubit test case in Fig. 8. The
calibration data of IBM’s quantum hardware is recorded in Table 3.
The statevector simulation and QASM simulation with a large shot
umber 𝑁𝑠 = 108 meet the loose convergence criterion 𝑟max ≤ 10−4.

The QASM simulation with 𝑁𝑠 = 105 shots shows an accuracy limit
ear 1∕

√

𝑁𝑠. This conclusion holds for fault-tolerant quantum linear
ystem algorithms, including HHL. Without quantum noise, the solver
till needs many shots to converge. As a reference value, 105 shots take
bout 43 s on the 133-qubit IBM Heron processor ibm_torino and
9 s on the 27-qubit Falcon processor ibmq_kolkata. The difference
s caused by the measurement time 𝑡mea. in two generations of IBM
uantum processors as listed in Table 3.

To address the second question (ii) raised at the beginning of
his section, we test the hybrid algorithm on a noisy simulator and
ardware with a moderate shot number 𝑁𝑠 = 105. The top two curves
n Fig. 8(a) are real hardware results. ibmq_kolkata is an older
rocessor with higher two-qubit gate error rates, so we observe an
ccumulation of error in the maximal residual 𝑟max. While on the

latest 133-qubit processor ibm_torino, we observe a lower error
ate but still do not reach convergence. The noisy simulator results

on Fake_Torino assembles the behavior of real hardware where the
detailed noise modeling is described in Section 4.2.1. The maximal
residual consistently stays on the level 𝑟max ≈ 10−1. In the presence of
uantum noise, increasing the shot number from 𝑁𝑠 = 105 to 𝑁𝑠 = 108
oes not help the hybrid solver converge. From the perspective of
8 
quantum state tomography, the HTree method achieves good fidelity
95% ∼ 99% on real hardware as shown on Fig. 8(b). We use dynamical
decoupling sequences and measurement error mitigation to suppress
the effect of quantum noise. However, the QASM (𝑁𝑠 = 108) simulation
result shows that a converging CFD solution requires at least 1 − 𝐹 ≤
10−7. The above results indicate that the current NISQ hardware is still
too noisy to implement explicit time-stepping numerical schemes for
solving time-dependent PDE problems.

4.4. Resource estimation & complexity analysis

This section compares the quantum resources required for three
quantum linear systems: VQE, VQLS, and HHL. We determine the most
suitable one for NISQ hardware based on qubits required, 2-qubit gate
counts, circuit depth, and estimated runtime on the 127-qubit IBM
agle processor ibm_sherbrooke. Table 4 summarizes the results.

We further compare the runtime per iteration to classical iterative
inear solvers such as conjugate gradient (CG) and GMRES. This es-

timation assumes no parallelization for both classical and quantum
solvers and does not consider any communication bottlenecks when
ubmitting quantum jobs to IBM’s cloud service. We manually transpile
he quantum circuits using the highest optimization level in Qiskit.

As mentioned in Section 2.3, VQLS would require more quan-
um resources than VQE on NISQ hardware. It requires one ancillary
ubit to perform the Hadamard test but introduces a deeper circuit
ainly due to the controlled application of the parametrized quan-

tum circuit 𝑈 (�⃗�) which composes 54.3% of the estimated runtime on
bm_sherbrooke and 306 2-qubit gates after transpilation. This leads

to each VQLS circuit runtime almost 50× longer than the VQE circuit
and beyond the hardware coherence time. Such an runtime overhead
can be mitigated by adopting the Hadamard overlap test as proposed in
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Fig. 8. (a) Convergence history of the hybrid algorithm on simulators and hardware. (b) State infidelity as a quality measure of the hybrid solver in each time step.
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the original VQLS paper [49], where we can significantly reduce circuit
runtime at the cost of doubling the qubits used. The other problematic
art is the scaling of number of VQLS circuits 𝑁cir. = (𝐿2

𝑎) needs
o evaluate in each iteration, where 𝐿𝑎 is the number of LCU (or
auli) terms given 𝑨 =

∑𝐿𝑎
𝑙=1 𝑐𝑙𝑨𝑙. Notice the total VQLS runtime for

ach iteration 𝑁cir. can already be compatible to the total runtime of
HL algorithm. HHL is known to be a resource-intensive fault-tolerant
lgorithm which requires much more ancillary qubits, and most of the
-qubit gate counts come from implementing the exp(𝑨𝑡) time evolution
perator. The results indicate VQLS is only suitable for NISQ hardware
hen the 𝑚 × 𝑚 matrix 𝑨 has an efficient decomposition such as 𝐿𝑎 =
(poly(log2 𝑚)). In the original VQLS paper [49], the authors consider

he Ising-inspired linear system problems satisfying this condition and
eading to an empirical scaling of 

(

(

log2(𝑚)
)8.5 𝜅 log(1∕𝜖)

)

through
umerical simulations [79]. Compared to the time complexity of CG
or positive definite matrices at each iteration 

(

𝑚𝑠
√

𝜅 log(1∕𝜖)
)

and
MRES for general matrices 

(

𝑚2), VQLS can be advantageous for
ery large and sparse system 𝑚. However, it is unlikely the same scal-
ng holds for general engineering problems through our observation.

From Table 4, the physical runtime required for VQLS and HHL both
exceed the NISQ hardware limitation. Although obtaining better gate
ounts using more advanced transpilation methods for fault-tolerant

algorithms like HHL is possible, the conclusions here still hold. We
conclude that VQE is the most suitable one for NISQ hardware judging
from estimated runtime.

Similar to VQLS, it is difficult to directly give the time complexity
f VQE due to its heuristic nature. As discussed in Section 2.3, one

can estimate the total runtime of VQE as 𝑡VQE = 𝑁itr.𝐿ℎ𝑡circ., given
the Hamiltonian in the form of Pauli decomposition 𝑯 =

∑𝐿ℎ
𝑙=1 𝛼𝑙𝑯 𝑙.

Since the construction of effective Hamiltonian involves non-trivial |𝑏⟩,
𝑯 is usually a dense Hermitian matrix and leads to approximately
𝐿ℎ = (𝑚2). Thus, VQE exhibits no hope to achieve any quantum
dvantage on solving linear systems over classical iterative solvers
nless some novel preconditioner could effectively improve the sparsity
f 𝑯 such that 𝐿ℎ = (poly(log2 𝑚)) while maintaining a low condition

number 𝜅. Eventually, we would expect running fault-tolerant quantum
linear system algorithms with optimal time complexity  (𝜅 log(𝑚∕𝜖))
on matured hardware with quantum error correction.
9 
Table 4
Resource estimation for solving a 16 × 16 linear system on the 127-qubits IBM Eagle
rocessor ibm_sherbrooke. 𝑡cir. stands for the estimated quantum circuit runtime
n this NISQ hardware. The coherence time is 𝑇2 ≈ 184 μs. The computation returns
eaningful results when 𝑡cir. ≤ 𝑇2. 𝑁cir. stands for the number of circuits to evaluate the

ost in each iteration. Since HHL is not an iterative solver, 𝑁cir. = 1. 𝑡total represents
he total runtime on quantum hardware for each iteration of VQE and VQLS. For
uantum solvers, 𝑡total ≈ 𝑁cir.𝑡cir.. For classical iterative solver, 𝑡total is averaged among

100 iterations.
Solver Regime Qubits 2q gates Circuit depth 𝑁cir. 𝑡cir. (μs) 𝑡total (μs)

CG Classical / / / / / 22.2
GMRES Classical / / / / / 16.8

VQE NISQ 4 15 59 136 6.3 856.8
VQLS NISQ 5 504 2512 484 291.2 1.4 × 105
HHL FT 12 3.7 × 105 1.7 × 106 1 2.4 × 105 2.4 × 105

5. Conclusion

We propose and test a hybrid quantum–classical algorithm for solv-
ing the incompressible Navier–Stokes equations on NISQ hardware. The
algorithm combines the classical pressure projection method and quan-
tum linear system algorithms. We use an efficient state reconstruction

ethod to address the well-known quantum readout problem, largely
nexplored in previous art. Preconditioning techniques can improve the
rainability of variational quantum linear system algorithms. Although
QLS is widely considered a promising candidate for solving linear

systems on NISQ hardware, our resource estimation indicates it would
equire non-affordable quantum resources unless the matrix 𝑨 has an
fficient Pauli or LCU decomposition. Our results indicate that current

quantum hardware is too noisy to solve time-dependent PDE problems
with explicit time-stepping. Besides quantum linear system algorithms,
another promising approach for solving PDEs on a quantum computer
is via Hamiltonian simulation [80] targeting to run on error-corrected
quantum hardware and allowing deep quantum circuits. Compared
to our hybrid NISQ algorithm, one clear advantage of Hamiltonian
simulation and other fault-tolerant quantum PDE algorithms [39,40]
is they do not require repeated encoding and readout during the com-
putation and hence further control the accumulation of error caused by

noisy measurement. With recent hardware demonstrations for linear
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PDEs [81,82], Hamiltonian simulation could, eventually, provide a
ifferent approach for solving the Navier–Stokes equations.
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Appendix. Quantum circuit and hardware co-design

We use different parameterized quantum circuit (PQC) designs for
𝑈 (�⃗�) to prepare the ground-state solution of the pressure Poisson
equation on quantum hardware. We consider four design candidates
(illustrated in Fig. A.9) widely used in the literature of variational quan-
tum algorithms [75,83–86] and evaluate them in terms of simulation
erformance and hardware resource cost.

The Hardware-Efficient Ansatz (HEA) [75] was originally proposed
for quantum hardware with nearest-neighbor connectivity (such as that
of IBM’s and Google’s superconducting quantum processors) where 2-
qubit gates are only applied on adjacent qubits to avoid additional
SWAP gates introduced in transpilation [87]. The Real-Amplitude
Ansatz (RAA) is a variant of HEA where the general single qubit
rotation layer is limited to 𝑅𝑦(𝜃) gate and only generates real-valued
tates. Alternating Layered Ansatz (ALT) is composed of blocks forming
ocal 2-designs and proven to be trainable for circuit depth 𝐷 ∈
(log(𝑁)) when combined with a local cost function 𝐶𝑙(�⃗�) [85]. Finally,

he Tensor Network Ansatz (TEN) is a family of circuits inspired by
lassical Tensor Network architectures such as Matrix Product States
MPS), Tree Tensor Networks (TTN) and Multi-scale Entanglement
enormalization Ansatz (MERA) [86]. For simplicity, we consider a

ensor product ansatz here to probe if entanglement is necessary to find
he ground state.

To evaluate each circuit candidate performance, we randomly sam-
le 𝐾 = 10 pre-conditioned Hamiltonian {𝑯(𝑡)}𝐾 at different times of
𝑖=1

10 
Table A.5
Summary of a 4-qubit circuit design case study where each PQC candidate contains 24
trainable parameters except for HEA 𝑁param = 72. The expressibility and entanglement
capability are sampled from 103 random samples. The average entanglement for the
true ground state |𝜓𝑔⟩ across different simulation times is 0.46. The transpiled circuit
epth with dynamical decoupling (DD) sequence is included. Digital DD sequence
enerally increases transpiled circuit depth but not actual hardware runtime 𝑡circ..

Coherence is calculated as 𝑡circ.∕𝑇2, where the average qubit lift-time 𝑇2 ≈ 57.15 μs
for ibmq_kolkata.

Ansatze Avg. 𝐹 Expr. ↓ Ent. ↑ 𝑁2q 𝐷trans. (DD) 𝑡circ. (μs) Coherence

HEA 99.99% 0.0003 0.8149 15 47 (68) 5.76 10.08%
RAA 99.99% 0.1899 0.7428 15 35 (56) 5.76 10.08%
RAA-p 99.27% 0.1895 0.7469 15 34 (54) 5.40 9.45%

ALT 83.82% 0.2349 0.5843 8 29 (34) 2.88 5.05%
TEN 53.04% 0.6350 0.3314 10 29 (30) 2.72 4.85%

the simulation with 𝛥𝑡 = 1. We then randomly initiate the parameters
f VQE and solve for ground-state preparation with the L-BFGS-B
ptimizer [77] on the Qiskit statevector simulator.

We calculate the expressibility and the entanglement capability [83]
as auxiliary measures for each ansatz candidate. The ansatz expressibil-
ity describes its capability to sample uniformly from the Hilbert space
and approximate arbitrary states. It can be defined as

Expr = K L
(

𝑃PQC(𝐹�⃗�) ∥ 𝑃Haar (𝐹 )
)

, (A.1)

where the Kullback–Leibler (KL) divergence [88] measures the dis-
ance between 𝑃PQC(𝐹�⃗�) distribution of state fidelities between two
andomly sampled parametrized states, and 𝑃Haar(𝐹 ) is the state fidelity
istribution for the ensemble of Haar random states. Expr closer to
ero indicates more expressivity for an ansatz. Following the original

definition [83], we calculate the entanglement capability as the av-
erage Meyer–Wallach 𝑄-measure [89] from an ensemble of randomly
sampled states

Ent = 1
|𝑆|

∑

𝜃𝑗∈𝑆
𝑄
(

|

|

|

𝜓(𝜃𝑗 )
⟩)

= 2
|𝑆|

∑

𝜃𝑗∈𝑆

(

1 − 1
𝑛

𝑛
∑

𝑘=1
Tr

[

𝜌2𝑘(𝜃𝑗 )
]

)

, (A.2)

where 𝜌𝑘 is the reduced density matrix of the 𝑘th qubit and |𝑆|
represents the size of samples. Notice 𝑄 = 0 for any product state and
𝑄 = 1 for the GHZ state |𝜓⟩GHZ = (|0⟩⊗𝑛+ |1⟩⊗𝑛)∕

√

2. We further record
he number of 2-qubit gates involved 𝑁2q, transpiled circuit depth
𝐷trans. and hardware runtime 𝑡circ. on 27-qubit ibmq_kolkata. The
circuits are transpiled using the highest optimization level and adopt XX
dynamical decoupling sequence [90–93] to suppress decoherence and
crosstalk during the idling time of the qubits, as illustrated in Fig. A.10.

We report a 𝑁 = 4 case study in Table A.5. The random seeds for
parameter generation, simulator, and optimizer are fixed to ensure a
fair comparison of averaged state fidelity 𝐹 . One can conclude that
the real-amplitude ansatz (RAA) outperforms all the other candidates
in terms of fidelity and resource burden. In this case, switching from
the linear entanglement structure via RAA pairwise only reduces 0.6%
of the coherence time. The difference can be as high as 5% (≈ 2.8 μs) at
𝑁 = 10 with 𝐷2 = 11. HEA has higher expressibility and entanglement
capability but achieves the same average fidelity with 3 times more pa-
rameters. The results from TEN emphasize that quantum entanglement
is a necessary resource in general state preparation. To further enhance
performance, one can consider strategies such as ADAPT-VQE [94] to
design problem-tailored ansatze, noise-adaptive circuit design [95] to
cope with hardware noise, and pulse-level ansatze [96] to suppress
decoherence due to much shorter duration on hardware.
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Fig. A.9. The ansatze considered in this study. After repeating 𝐷𝑗 times of each block, a final rotation layer enhances expressibility, though it is not illustrated further here. (a)
HEA uses 𝑈 = 𝑅𝑧(𝜃𝑗 )𝑅𝑦(𝜙𝑗 )𝑅𝑧(𝜑𝑗 ) as a general rotation on the Bloch sphere along with non-parameterized adjacent CNOT gates providing entanglement to prepare the solution
state; RAA uses 𝑈 = 𝑅𝑦(𝜃𝑗 ) in the rotation layer to reduce the trainable parameters. (b) RAA with a pairwise entanglement layer to reduce the circuit duration of one CNOT gate
per block. (c) Alternating Layered Ansatz (ALT). (d) Tensor Network Ansatz (TEN) prepares tensor product states and is expected to have a weaker entangling capability.
Fig. A.10. Visualization of the transpilation process of 4-qubit RAA (𝐷1 = 1) on 27-qubit ibmq_kolkata.
Data availability

All software and data associated with this work are included in
an open source and permissively licensed GitHub repository (https:
//github.com/comp-physics/NISQ-Quantum-CFD).
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