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Abstract

Burst-wave lithotripsy (BWL) is a therapy for ablating kidney and gall bladder stones. During
therapy, high-amplitude ultrasound waves issue from a transducer array and focus near the stone.
These waves can nucleate clouds of small bubbles at the surface of the stone. This can affect
treatment efficacy: acoustic shielding due to the bubble clouds can attenuate stone breakup, though
the collapse of individual bubbles can amplify it. Further, these collapses can cause damage to
surrounding tissue. Thus, optimizing lithotripsy against potential damage requires predicting
bubble-stone interactions. Simulating bubble cloud cavitation is challenging due to the breadth
of spatio-temporal scales involved. Additional scale restrictions are associated with soft material
dynamics, which interact with the bubble clouds during lithotripsy. The open-source solver MFC
can address these challenges [1]. It uses a phase-averaging sub-grid model for bubble cloud cavitation
and has been extended to include a hypoelastic Kelvin–Voigt model to compute stresses in stones
and nearby soft surfaces. These models are fully-coupled to the fluid dynamics. The capabilities of
this approach are demonstrated for a model BWL problem. The stress state in a kidney stone is
modeled during treatment.
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1. Introduction

Burst-wave lithotripsy (BWL) has recently been developed as an alternative to shock-wave lithotripsy
(SWL) for the treatment of kidney stones. Both therapies use multiple rounds of focused waves to
ablate stones, enabling patients to pass them naturally once small enough [2]. While SWL has been
shown to be an effective treatment, there is evidence that it can, in some cases, cause significant
injury to patients [3, 4]. Hence, BWL, which uses smaller amplitude bursts of focused ultrasound,
has proved to be a compelling alternative with less potential for damage. Experiments [5, 6] have
demonstrated the treatment’s efficacy for kidney stone breakdown. Furthermore, BWL tends to
produce internal cracks within the entire stone that leads to small fragments whose size can be
regulated by the ultrasound frequency [7, 5].

To optimize treatment efficacy and minimize potential damage to surrounding tissues across, we
develop a framework for high fidelity simulations of BWL. Such simulations could predict BWL
efficacy in a wide array of cases, with varying transducer configurations, stone composition and
geometries. Furthermore, during treatment, cavitating bubble clouds can nucleate near the stone
and affect treatment [8]. These bubble clouds directly can either attenuate the breakup through
acoustic shielding, or enhancing it through violent collapse of individual bubbles. Thus, to fully
model BWL and understand these effects, simulations should incorporate bubble clouds and an
accurate stone model. In this paper, we demonstrate MFC’s ability to simulate BWL and similar
phenomena, using phase-averaging sub-grid bubble model and a hypoelastic material model for the

∗Corresponding author; jspratt@caltech.edu

Preprint submitted to the 11th International Symposium on Cavitation



stone. In section 2, MFC and the added hypoelastic material model are presented. In section 3,
results of validation and sample simulations are discussed.

2. Materials and Methods

2.1. Multi-component Flow Code (MFC) solver

MFC is an open-source high-order-accurate multi-component flow solver. It uses interface-capturing,
HLL-type approximate Riemann solvers, and total-variation-diminishing time-integration schemes
to solve for a wide range of flows [1]. In particular, the 5-equation diffuse-interface model is used
to represent compressible multi-component flows [9]. MFC models bubbly flows via a sub-grid
ensemble-phase-averaged model [10], which has already been verified [11] and used in various
studies [12]

2.2. Hypoelasticity Implementation

We use a hypoelastic constitutive model to represent the solid mechanics of BWL in an Eulerian
framework. This model, suitable for small strains [13], uses an objective temporal derivative of
the constitutive relation to avoid calculating strains [14]. Instead, strain rates are obtained from

velocity gradients. An elastic shear stress τ
(e)
ij contributes to the Cauchy stress tensor as
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where p is the pressure and τ
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Neo-Hookean Kelvin–Voigt media, we can write τ̇
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strain rate tensor and the Lie objective temporal derivative [15] is used to solve the equation. Adding
the elastic stress contributions and this evolution equation to the usual 5-equation model [16] yields,
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where superscripts (1) and (2) are indices corresponding to different materials, α(k) is the k-th
volume fraction, uj the velocity in the j-th direction, E the total energy, and K the interface
compressibility term. The right-hand-side terms to the elastic shear stress evolution equation are
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An elastic contribution e(e) =
τ
(e)
ij τ

(e)
ij

4ρG is added to the total energy, yielding E = e+ ‖u‖2/2 + e(e),
where e is the internal energy. Finally, the system is closed using the stiffened-gas equation of state

pk = (γk − 1)ρ)kek − γkπ∞,k. (4)
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3. Results

3.1. Validation

We validate our implementation of material hypoelasticity via two test cases. The first is a one-
dimensional shock tube considered by Gavrilyuk et al. [17] and Rodriguez and Johnsen [14] with a
1000 : 1 pressure jump and y-velocity discontinuity in an elastic material. Its initial conditions are

(ρ, u, v, p, τe, G) =

{
(103, 0, 100, 108, 0, 1010) for x ∈ [0, 0.5),

(103, 0,−100, 105, 0, 1010) for x ∈ [0.5, 1].
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Figure 1: Comparing the MFC solution (blue dotted line) to the exact solution (black line) for a 1D shock tube
problem at t = 64 µs

Results are shown in figure 1. Five waves are observed: a shock propagating to the right, a rarefaction
propagating to the left, a contact discontinuity in the center, and shear waves propagating in both
directions. Simulation results show good agreement with the exact solution, notably demonstrating
correct p-wave and s-wave speeds in this elastic material.

Next, we consider a two-dimensional simulation of bi-layered media to examine transmitted s- and
p-waves through a water–elastic-medium interface. An acoustic source in the top fluid layer, 500 m
above the interface, generates one cycle of a 10 Hz Ricker wave. The elastic material has density
ρ = 2500 kg/m3 and theoretical wave-speeds cp = 3400 m/s and cs = 1963 m/s.
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(a) t = 0.7 s (b) t = 1.26 s

Figure 2: Comparison of present velocity magnitude (left half-space) with the velocity vectors (right half-space)
associated with the spectral element code of Komatitsch et al. [18] at two different times t as labeled.

Figure 2 compares results of the present implementation with the spectral-element-method based
simulation of Komatitsch et al. [18]. The simulation displays all expected waves: a (b) reflected
and (c) transmitted p-wave, a (d) transmitted s-wave, and (e,f) refracted waves. Calculated p and
s-wave speeds in the elastic medium match the values expected from theory within 0.1%.

3.2. BWL simulation

We next simulate BWL via a two-dimensional domain and a hypoelastic model stone. A transducer
array focuses 10 pulses of 370 kHz ultrasound with an amplitude of 6.5 MPa onto a stone characterized
by ρ = 2040 kg/m3, cp = 3640 m/s, and cs = 2035 m/s. These values correspond to the density and
wave-speeds of an artificial kidney stone (called Begostone), and fall within the range of values seen
in human urinary stones [7]. The stone is submerged in water.

(a) t = 25 µs (b) t = 50 µs (c) t = 70 µs

Figure 3: Pressure in the liquid and maximum principal stress in the stone at three different times during MFC
simulation of BWL

Figure 3 shows the pressure in the liquid, and maximum principal stress in the stone in the absence
of any cavitating bubbles. Ultrasound waves emitted by the transducer focus on the model stone,
and create high stress concentrations which propagate through the stone. While a direct comparison
cannot be made, the stress pattern observed in the stone resembles those observed at the same
frequency experimentally by Maxwell et al. [7] via photoelastic imaging. Such simulations can be
run for various test cases, varying stone geometry and composition, transducer frequency and focal
point, and so on. Hereby, MFC can serve as a powerful tool to optimize BWL administration.
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