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Abstract—GPUs are the heart of the latest generations of
supercomputers. We efficiently accelerate a compressible
multiphase flow solver via OpenACC on NVIDIA and AMD
Instinct GPUs. Optimization is accomplished by specifying
the directive clauses gang vector and collapse. Fur-
ther speedups of six and ten times are achieved by packing
user-defined types into coalesced multidimensional arrays
and manual inlining via metaprogramming. Additional
optimizations yield seven-times speedup of array packing
and thirty-times speedup of select kernels on Frontier. Weak
scaling efficiencies of 97% and 95% are observed when
scaling to 50% of Summit and 87% of Frontier. Strong
scaling efficiencies of 84% and 81% are observed when
increasing the device count by a factor of 8 and 16 on
V100 and MI250X hardware. The strong scaling efficiency
of AMD’s MI250X increases to 92% when increasing the
device count by a factor of 16 when GPU-aware MPI is
used for communication.

Index Terms—OpenACC, directive offloading, NVIDIA GPU,
AMD GPU

I. INTRODUCTION

GPUs are important in increasing the computational
power of the newest and fastest supercomputers. OLCF
Titan was the first leadership-class supercomputer that
used GPUs for scientific computation. Titan was followed
by the V100 generation of NVIDIA machines in the
United States, like OLCF’s Summit and LLNL’s Sierra,
which both spent time as the fastest supercomputer in the
world. These V100-based machines have been replaced
with AMD-powered exascale machines, OCLF’s Frontier,
and LLNL’s El Capitan. At the same time, the NVIDIA-
powered machine JUPITER, an exascale machine at
the Jülich Super Computing Center in Europe, is being
commissioned. Conducting simulations with hundreds of
billions of grid cells on leadership-class supercomputers
powered by multiple hardware vendors requires using
GPUs with efficiency and portability.

Several teams have made porting efforts to use the AMD
hardware featured on Frontier. URANOS-2.0 [1] is a
Fortran-based compressible Navier–Stokes solver that
supports NVIDIA and AMD GPUs with OpenACC of-
floading. STREAmS-2 [2] is also a compressible Navier–
Stokes solver that supports NVIDIA and AMD GPUs.
STREAMs supports NVIDIA GPUs using CUDA Fortran
and AMD GPUs using HIPFort. An OpenMP port of
STREAMs adds support for Intel GPUs with directive-
based offloading [3].

MFC [4], discussed herein, solves compressible multi-
phase flow problems with Fortran and supports NVIDIA
and AMD offloading via OpenACC [5]. OpenACC re-
quires the user to identify regions in code that can benefit
from hardware acceleration and indicate to the compiler
that it should create hardware-accelerated kernels for
these regions. The compiler then generates optimized
kernels for the identified regions. NVIDIA’s NVHPC
supports OpenACC offloading on NVIDIA GPUs, and
HPE’s Cray Compiler Environment (CCE) supports Ope-
nACC offloading on NVIDIA and AMD GPUs. GNU 14+
and Flang 18+ also support OpenACC, though their
relative OpenACC immaturity prevents their use in our
application. Due to the directive-based implementation,
the resulting implementation is also performant on CPU
architectures. Our implementation is compatible with
ARM64 and x86-64 CPU architectures when compiled
without OpenACC.

We evaluate our implementation’s roofline and scaling
performance on leadership-class NVIDIA and AMD su-
percomputers. Summit is an NVIDIA V100 machine with
27,648 GPUs and achieves a peak of 148.6PFLOP/s on
the LINPACK benchmark. Frontier is an AMD MI250X-
based supercomputer with 37632 GPUs and achieves a
peak of 1.2EFLOP/s on the LINPACK benchmark, mak-
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ing it eight times faster than Summit. Each AMD MI250X
on Frontier contains two graphics compute dies (GCDs),
which are effectively separate hardware devices. The
newer NVIDIA A100, H100, and GH200 devices, as
well as the V100 and MI250X, are used to compare
grind time and its makeup.

We introduce the physical model and numerical method
for simulating compressible multiphase flows in section II.
The background is followed by details regarding the im-
plementation and optimizations that yield the performance
and portability observed on NVIDIA and AMD GPUs in
section III. Next, we provide detailed performance results
supporting our claims of performance and portability in
section IV. We close by demonstrating the simulation
capabilities via three fluid flow demonstration cases
simulated on three different GPUs in section VI.

II. BACKGROUND

A. Physical Model

We use Baer–Nunziato [6] type models for multiphase
flows with a diffuse interface capturing scheme. Diffuse
interface schemes allow for artificial diffusion between
phases and avoid the need for mesh management and
unique treatments to ensure conservation required by
interface tracking schemes [7]. The original model of
Baer and Nunziato allows for disequilibrium in pressure
and velocity between fluid phases. We use the reduced
5-equation model for multiphase flows of Allaire et al.
[8]. The Allaire model enforces pressure and velocity
equilibrium between phases and is suitable for many
multiphase flow problems. For two components, the
Allaire model is given by

∂αi

∂t
+∇ · (αiρiu) = 0,

∂ρu

∂t
+∇ · (u⊗ u+ pI) = 0,

∂ρE

∂t
+∇ · [(ρE + p)u] = 0,

∂αi

∂t
+ u · ∇αi = 0,

where ρ, u, p, and E are the mixture density, velocity,
pressure, and energy, and αi are the volume fractions of
component i. The system of equations is closed using the
stiffened gas equation of state (EOS), which faithfully
models many liquids and gases [9]:

ρE =
1

γ − 1
p+

γπ∞

γ − 1
.

The parameters γ and π∞ are the mixture ratio of specific
heats and liquid stiffness. The liquid stiffness parameter
allows for liquids to be modeled as if they were high-
pressure gasses.

B. Numerical Method

A finite volume scheme that follows Coralic and Colo-
nius [10] solves the model of section II-A. These
methods are implemented in MFC [4], a GPU-accelerated
compressible CFD solver [11–13] written in Fortran
(2003). The governing equations are discretized on a
structured grid as

∂q

∂t
+
∂F x(q)

∂x
+
∂F y(q)

∂y
+
∂F z(q)

∂z
+h(q)∇·u = 0 (1)

where q and F are the vectors of conservative variables
and fluxes and h(q) is a volume averaged source term.
Equation (1) is integrated in space across each cell center
as

∂qm,n,p

∂t
=

1

∆xj

(
F x
m−1/2,n,p − F x

m+1/2,n,p

)
+

1

∆yj

(
F y
m,n−1/2,p − F y

m,n+1/2,p

)
+

1

∆zk

(
F z
m,n,p−1/2 − F z

m,n,p+1/2

)
− h(qm,n,p) (∇ · u)m,n,p .

The flux terms F are obtained by averaging over cell
interfaces. The fluxes at cell interfaces are computed via
the HLLC approximate Riemann solver [14] using third
or fifth-order accurate WENO reconstructions [15].

III. IMPLEMENTATION

A. Domain Decomposition and I/O

The computational domain is decomposed into 3D blocks
across processors to exploit distributed computing capa-
bilities. Blocks with uniform dimensions in each direction
are used rather than splitting in one direction (slabs) or
two directions (pencils). Compressible flow solvers do
not require global communication. Blocks reduce the
overall communication cost by minimizing the surface-
to-volume ratio of each process’s domain. Minimizing
the surface-to-volume ratio keeps the buffer regions for
nearest-neighbor communication between processes small
relative to each process’s domain.

The domain is discretized using a structured mesh. Local
mesh refinement is implemented using a hyperbolic
tangent function [16]. Cartesian, axisymmetric, and
cylindrical coordinates are supported. 3D cylindrical
grids make use of FFTW [17] on CPUs, cuFFT [18]
on NVIDIA GPUs, and hipFFT [19] on AMD GPUs
to apply a low-pass filter to the flow variables in
the azimuthal direction. Low-pass filtering removes the
high-frequency content, alleviating the restrictive CFL
condition from the grid cells near the axis.

The third- and fifth-order accurate reconstructions that
improve asymptotic convergence rates require information



at the solution state outside each processor’s local domain.
A halo exchange between adjacent processors is required
in each dimension at each time step. Each process
packs its corresponding buffer region into a 1D array
for compatibility with MPI subroutines. Each process
performs an MPI_sendrecv with relevant neighbor
processes in the current dimension and unpacks the
received buffer. This halo exchange process gives each
process the information necessary to perform third- and
fifth-order accurate WENO reconstructions.

Unsteady compressible flow simulations require I/O
operations at intervals of O(103) time steps. I/O is
performed using MPI I/O via collective operations into
a shared binary file or within each process, each writing
a binary file. Before Frontier, MFC relied on the shared
binary file approach. When scaling to 65,536 GCDs on
Frontier, we witnessed increased I/O times when creating
MPI I/O shared binary files and found a file-per-process
approach more appropriate. Write access is allowed in
waves of 128 processes, with each wave offset by a
set number of double-precision multiplication operations.
Allowing file access in small waves avoids overwhelming
the file system with metadata creation.

Host code reads the MPI I/O binary files and creates
SILO [20] files that can be visualized with several free
tools, including Paraview [21] and VisIt [22].

B. GPU Offloading

We use OpenACC [23] with NVHPC and CCE compilers
for directive-based offloading of all compute kernels on
NVIDIA and AMD accelerators. Once preprocessing has
been performed on CPUs, the initial state variables are
transferred to the GPUs, and all subsequent computation
is performed on the GPU. The CPU facilitates local
MPI communication of relatively small buffer regions
(if GPU-aware MPI is unavailable) and performs I/O
operations once the initial state has been transferred to
the accelerators. The relatively expensive GPU–CPU data
transfer required for I/O occurs at intervals of O(103)
time steps, making it negligible to the overall runtime.
Directive-based offloading with OpenACC requires only
identifying independent loops and specifying the de-
sired level of parallelism. Once independent loops are
identified, the compiler generates optimized kernels. We
use cuTENSOR [24] and cuFFT libraries on NVIDIA
hardware and hipBLAS [25] and hipFFT libraries on
AMD hardware for optimized array packing and Fourier
transforms.

C. Optimization

Listing 1 shows the directives used for a kernel in
which O(102) computations must be performed for each
equation in each cell. Loops j, k, and l loop over O(102)

Listing 1: Directive setup for a core OpenACC kernel
!$acc parallel loop vector gang collapse(3) &
!$acc default(present) private(...)
do l = is3%beg, is3%end !coordinate 3

do k = is2%beg, is2%end !coordinate 2
do j = is1%beg, is1%end !coordinate 1

!$acc loop seq
do i = 1, num_PDEs

!!> Core kernel,
!!> O(100) arithmetic operations

end do
end do

end do
end do
!$acc end parallel loop

elements each and loop i loops over O(1) elements for
common two-phase flow problems like shock droplet and
shock bubble interaction. The two most expensive kernels,
approximate Riemann solve and WENO reconstruction,
have this loop structure.

OpenACC kernels distribute the workload using gangs,
workers, and vectors corresponding to blocks, warps, and
threads in CUDA notation. The default behavior of the
parallel loop directive in OpenACC is to split loop
iterations across gangs, leading to each block using a
single OpenACC vector and under utilizing resources.
We append gang vector clauses to all parallel
loop directives to split the loop iterations across multiple
gangs with fixed vector length [26]. Further optimization
is obtained by collapsing the j, k, and l loops in
listing 1 into a single loop using collapse(3), which
allows the compiler to select the optimal gang and vector
size for a given problem and architecture. We find that
the innermost loop over i in listing 1 benefits from
serialization via !$acc loop seq due to its small
loop range of O(1) for general two-phase problems.

Additional optimization in the most expensive kernels
is achieved by packing user-defined struct-of-array data
types into flattened multidimensional arrays. The compiler
can perform aggressive optimizations on flattened multi-
dimensional arrays that are not possible with user-defined
types. Using multidimensional arrays rather than user-
defined types for a representative two-phase problem with
one million grid cells, a sixfold speedup in the WENO
kernel was observed.

Additional speedup is made possible by reshaping ar-
rays for coalesced memory access in the most expen-
sive kernels. Memory coalescence allows for increased
throughput of high bandwidth memory on accelerators.
Coalescing memory results in a ten-times speedup in
the WENO kernel for a representative two-phase flow
problem with one million grid cells. This reduction



outweighs the cost required to transpose the arrays.
With NVHPC and NVIDIA hardware, the cuTENSOR
library performed transposes with similar performance to
fully collapsed OpenACC loops. With CCE and MI250X
hardware, the hipBLAS library showed a seven-times
speedup over fully collapsed OpenACC loops for the
same transpose operations.

Metaprogramming, enabled by Fypp [27], further im-
proves GPU kernel performance. Sometimes, the compiler
does not automatically inline serial subroutines within
GPU kernels across modules. Using Fypp allows these
subroutines to be inlined by programmer directives
for compiler optimization. Fypp does not generate any
code that could not be written manually. However, it
does generate code that would be tedious to write
manually, reducing overall line count and improving code
readability. Inlining serial subroutines via programmer
directives with Fypp prevents a tenfold slowdown of the
Riemann and WENO kernels that would otherwise call
serial subroutines.

D. Frontier and CCE Specific Optimization

Profiles showed that the MI250X spent a significant
amount of its runtime packing struct-of-array data into 4D
arrays to facilitate lowest-rank coalesced memory access
in the destination array for the approximate Riemann
solver and WENO kernels. The fully collapsed three-
or four-loop OpenACC kernels that perform well on
NVIDIA’s hardware with NVHPC execute slowly on the
MI250X with CCE. We suspect that the slowdown is due
to the 8MB L2 cache of the MI250X, though it could
also be a result of poor optimizations by the compiler.

The best practice to improve matrix transpose efficiency is
to use the BLAS extension GEAM. The ROCm software
stack provides the hipBLAS library, which contains a
strided, batched, double-precision GEAM operation that
efficiently transposes the first two indices of an array.
Arbitrary index transposes can be performed using index
fusing and batched transposes. A seven-fold reduction in
computational time is achieved for these kernels when
using hipBLAS libraries.

The CCE Fortran compiler with OpenACC offloading
performed poorly when encountering any variable in a
private clause with an unknown compile-time size. In
this case, the compiler allocates memory for that variable
at run time after the thread block starts and the size is
known. Device-side allocations are expensive on current
AMD GPUs because they require the kernel to write
information into a special buffer, the host to read this
buffer, perform an action, and inform the kernel it can
continue. One kernel in which this phenomenon was
particularly problematic went from taking 90% of the
total runtime to just 3% of the total runtime when just

Listing 2: Scalar Field Derived Type
type scalar_field

real(kind(0d0)), pointer, &
dimension(:, :, :) :: sf => null()

end type scalar_field

one, O(1)-element array in its private clause had its
size declared at compile time.

E. Library Offload Implementations

Offloading suitable computations to vendor-provided
libraries provides access to hardware-optimized imple-
mentations without manual tuning. We utilize vendor-
provided libraries to perform array transposes and cal-
culate fast Fourier transforms. Listing 2 defines the
scalar_field data type that is necessary to under-
stand the array transpose implementations.

Listing 3 shows how cuTENSOR is used to convert
an array of scalar fields into a flattened 4D array with
coalesced memory at each initialization of the WENO
reconstruction step. In the NVIDIA implementation,
the array of scalar fields is first packed into a 4D
temporary array using fully collapsed OpenACC loops.
The temporary array v_temp is generated only once
per initialization of the WENO reconstruction step when
coalescing memory in the x-direction and reused in the y-
and z-directions. Calls to reshape bracketed by !$acc
host_data use_device() directives indicate that
cuTENSOR should be used to perform the specified index
shifts on the GPU.

Listing 4 shows the more involved approach of packing
an array of scalar fields into a flattened 4D array with
coalesced memory using hipBLAS. We include only
how the z-direction memory coalescence is achieved
for brevity. Coalescence in the x- and y-direction are
completed via fully collapsed OpenACC loops and a
single strided and batched hipBLAS GEAM call. Mem-
ory coalescence in the z-direction requires two GEAM
operations because it swaps the first and third indices.
The first call is to a strided, batched GEAM operation
and swaps the first and second indices (Aijk → Ajik).
A strided, batched GEAM can be used for this operation
because it is equivalent to k permutations of Aij to Aji.
The second GEAM operation groups the i and j indices
and performs the permutation A(ji)k to Ak(ji) using an
unbatched GEAM operation. An unbatched operation is
used because this is a single permutation between a j× i
dimension tensor with a k dimension tensor.

Library calls to cuFFT and hipFFT are more straightfor-
ward. Listing 5 and listing 6 demonstrate how OpenACC
directives are used with cuFFT and hipFFT to com-



Listing 3: GEAM transpose with cuTENSOR from index order (1,2,3,4) to (3,2,1,4)
subroutine s_GEAM_transpose(v_vf, v_sf_t, n1, n2, n3, n4)

use CuTensorEx
type(scalar_field), dimension(:) :: v_vf ! Initial array of scalar fields
real(kind(0d0)), dimension(:,:,:,:) :: v_sf_t, v_temp ! Transposed and temporary array
integer :: n1, n2, n3, n4 ! Array dimensions

!$acc parallel loop collapse(4) gang vector default(present)
do j = 1, n4

do q = 1, n3
do l = 1, n2

do k = 1, n1
v_temp(k, l, q, j) = v_vf(j)%sf(k, l, q)

end do
end do

end do
end do
!$acc end parallel loop

!$acc host_data use_device(v_temp, v_sf_t)
v_sf_t = reshape(v_temp, shape=[n3, n2, n1, n4], order=[3, 2, 1, 4])
!$acc end host_data

end subroutine s_GEAM_transpose

Listing 4: GEAM transpose with hipBLAS from index order (1,2,3,4) to (3,2,1,4)
subroutine s_GEAM_transpose(v_vf, v_sf_t, n1, n2, n3, n4)

use hipfort
use hipfort_hipblas
use hipfort_check

type(scalar_field), dimension(:) :: v_vf ! Initial array of scalar fields
real(kind(0d0)), dimension(:,:,:,:) :: v_sf_t, transpose_tmp ! Transposed and temporary array
integer :: n1, n2, n3, n4 ! Array dimensions
integer :: j ! Loop iterator

for j = 1, n4
!$acc host_data use_device(v_vf(j), v_sf_t, transpose_tmp)
call hipblascheck(hipblasdgeamstridedbatched(handle, HIPBLAS_OP_T, HIPBLAS_OP_T, n1, n2, &

1.0_8, c_loc(v_vf(j)), n2,int(n1*n2,c_int64_t), &
0.0_8, c_loc(v_vf(j)), n2,int(n1*n2,c_int64_t), &
c_loc(transpose_tmp, n1,int(n1*n2,c_int64_t),n3))

call hipblascheck(hipblasdgeam(handle, HIPBLAS_OP_T, HIPBLAS_OP_T, n1, n2*n3, &
1.0_8, c_loc(transpose_tmp), n2*n3,&
0.0_8, c_loc(transpose_tmp), n2*n3, &
c_loc(v_sf_t(:,:,:,j)), n1))

!$acc end host_data
call hipCheck(hipDeviceSynchronize())

end do
end subroutine s_GEAM_transpose

pute the forward Fourier transform. Inverse Fourier
transforms are done by replacing cufftExecD2Z
and hipfftExecD2Z with cufftExecZ2D and
hipfftExecZ2D using the same OpenACC directives.

F. Validation

MFC has been validated against experimental results for
several canonical problems in multiphase fluid dynamics,
such as shock bubble and shock droplet interaction,
spherical bubble collapse, and Taylor–Green vortices [4].

Listing 5: Fast Fourier transform with cuFFT.
!$acc host_data

use_device(data_real,data_cmplx)
ierr = cufftExecD2Z(fwd_plan, data_real,

data_cmplx)
!$acc end host_data

Every MFC pull request comprises over 250 test cases
using NVIDIA, GCC, CCE, and Intel compilers on CPUs,



Listing 6: Fast Fourier transform with hipFFT.
!$acc host_data

use_device(data_real,data_cmplx)
ierr = hipfftExecD2Z(fwd_plan,

c_loc(data_real), c_loc(data_cmplx))
call hipCheck(hipDeviceSynchronize())
!$acc end host_data

AMD GPUs, and NVIDIA GPUs. This rigorous testing
helps ensure that simulation results remain independent
of compiler or hardware.

IV. PERFORMANCE

We begin our performance summary by presenting results
for MFC on Summit (NVIDIA V100) and Frontier
(AMD MI250X). More specifically, we show kernel-level
performance of the most expensive kernels, weak scaling
results up to 50% of OLCF Summit and 87% of OLCF
Frontier, and strong scaling results over a 16-times and
512-times increase in device count on OLCF Summit and
OLCF Frontier. We then show speedups over the fastest
tested CPUs from AMD, Intel, NVIDIA, and IBM at the
time of writing. After this, we detail the breakdown of
time spent in the most expensive kernels and time spent
packing arrays on NVIDIA’s most recent hardware and
compare the results with AMD’s MI250X. We find that
memory bandwidth and L2 cache play a role in a 3.71-
and 2.62-times increase array packing runtime on V100
and MI250X GPUs compared to an A100 GPU.

A. Kernel-Level Performance

Roofline performance is measured using NVIDIA’s
nsys-compute on NVIDIA hardware and CCE’s
omniperf on AMD hardware. Figure 1 shows the
roofline performance of the approximate Riemann solve
and WENO reconstruction kernels on V100 and MI250x
GPUs. These two kernels are shown because they are
the two most expensive kernels, accounting for 63%
and 56% of the grind time spent on compute-focused
tasks while only making up 10% of the total number
of kernels on the V100 and MI250X. On the V100,
the approximate Riemann solve is memory-bound, while
the WENO reconstruction is compute-bound. On the
MI250X, both kernels are memory-bound because its
transition from memory to compute bound occurs at an
arithmetic intensity 3.4 times that of a V100. The WENO
kernel achieves 45% of V100 peak FP64 FLOPS and
21% of MI250X peak FP64 FLOPS. The memory-bound
approximate Riemann solve kernel achieves 13% of V100
peak FP64 FLOPS and 3% of MI250X peak FP64 FLOPS.
The decreased roofline performance of the MI250X is
likely due to its 8MB L2.
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Fig. 1: Roofline performance of the most expensive kernels
on (a) OLCF Summit and (b) OLCF Frontier. The Riemann
solver and WENO kernels use 13% and 45% of peak FLOPS
on OLCF Summit. On OLCF Frontier, the Riemann solver and
WENO kernels use 3% and 21% of peak FLOPS.

B. Weak Scaling Performance

Weak scaling performance is measured using the wall
runtime while increasing the problem size with the
number of devices so that each device maintains the same
amount of work. Figure 2 shows weak scaling results for
a representative two-phase problem on OLCF Summit
and OLCF Frontier. MFC scales from 128 to 13825 V100
GPUs (50% of the machine) on OLCF Summit with 97%
efficiency and from 128 to 65536 MI250X GCDs (87%
of the machine) on OLCF Frontier with 95% efficiency.
The wall times are normalized by the wall time of the
base case, which has 128 V100 GPUs on Summit and 128
MI250X GCDs on Frontier. These results are unsurprising
because the nearest-neighbor communication required to
send and receive buffer regions remains constant as the
number of processes increases while the grid cells per
process remain constant, and no significant collective
communication is required.

C. Strong Scaling Performance

Strong scaling performance is measured using the wall
runtime and increasing the number of devices while
maintaining a constant problem size. Figure 3 shows the
strong calling performance of MFC on OLCF Summit
and OLCF Frontier for the same representative two-
phase problem used for weak scaling tests. A V100
GPU maintains 84% of ideal performance when the GPU
count is increased by a factor of eight for a two-phase
problem with 8 million cells per GPU. An MI250X GCD
maintains 81% of ideal performance when the GCD count
is increased by a factor of 16 for a two-fluid problem with
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Fig. 2: Weak scaling results on (a) OLCF Summit and (b)
OLCF Frontier. On OLCF Summit, MFC scales from 128 V100
GPUs to 13824 V100 GPUs (50% of the machine) with 97%
efficiency. On OLCF Frontier, MFC scales from 128 MI250X
GCDs to 65536 MI250X GCDs (87% of the machine) with
95% efficiency.
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Fig. 3: Strong scaling results on (a) OLCF Summit and (b)
OLCF Frontier. On OLCF Summit, a simulation with 8 million
cells per GPU maintains 84% of ideal performance when
increasing the GPU count by a factor of 8. On OLCF Frontier,
a simulation with 32 million cells per GCD maintains 81% of
ideal performance when increasing the GCD count by a factor
of 16.

32 million cells per GCD. A smaller problem with half as
many grid cells per device scales with poorer efficiency
due to the increased MPI costs relative to compute costs.
This eventually leads to the flatline observed in the 16
million cell results on OLCF Frontier in fig. 3.

Figure 4 shows the improvement in strong scaling
performance achieved by using GPU-aware MPI on
Frontier with HIP-coupled MPI libraries. With GPU-
aware MPI enabled, a simulation with 32 million cells
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Fig. 4: Strong scaling on OLCF Frontier with and without
GPU-aware MPI. With GPU-aware MPI, a simulation with 32
million cells per GCD maintains 92% of ideal performance
when increasing the GCD count by a factor of 16. This is a 14%
increase over the 81% of ideal performance maintained when
increasing device count by a factor of 16 without GPU-aware
MPI.

per MI250X GCD maintains 92% of ideal performance
when the GCD count is increased by a factor of 16. This
is a 14% increase from the 81% of ideal performance
maintained when increasing the device count by a factor
16 without GPU-aware MPI for the same problem size.

D. Speedup

Figure 5 shows the speed up of the GH200, H100, A100
and V100 GPUs and MI250X GCD over the fastest
benchmarked CPUs from AMD, NVIDIA, Intel, and IBM.
Speedup is measured using the grind time in nanoseconds
per grid cell, PDE, and right-hand-side evaluation, with
CPU runtimes being normalized by the total number
of cores. Normalization by the number of cores means
the results should be interpreted as one GPU die is X-
times faster than one CPU die. At the time of writing,
the AMD EPYC 9564 Genoa is the fastest tested CPU,
with the tested GPUs achieving speedups of only 1.5 to
5.3 times. Intel’s Xeon Max 9468 Saphire Rapid HBM
and NVIDIA’s ARM Neoverse V2 Grace CPU perform
similarly, with the tested GPUs achieving between 3 and
11 times speedup. The older IBM Power 10 is slower than
the newer chips from NVIDIA, Intel, and AMD, with
the tested GPUs achieving 9.1 to 31.3 times speedups.

V. COMPUTE BREAKDOWN

In the following section, NVHPC HPC SDK 22.11 is
used to collect results for V100 and A100 devices,
NVHPC HPC SDK 24.5 is used to collect results for
H100 and GH200 hardware, and HPE Cray Compiling
Environment (CCE) 16.0.1 is for the AMD MI250X.
NVIDIA’s nsight-compute and CCE’s roc-prof
are used on NVIDIA and AMD devices for measuring
kernel run times.

Figure 6 shows the percentage of time spent in each of the
most expensive kernels and array packing for a two-phase
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Fig. 5: Relative speed up in grind time for the optimized
code executed on GPUs, as labeled, compared to the fastest
benchmarked CPUs (all cores used) offered by AMD, NVIDIA,
Intel, and IBM. Larger numbers indicate a large speedup of the
single GPU over the single CPU socket.

problem with 8 million grid cells in 3D. NVIDIA’s most
recent GPUs at the time of writing, the GH200, H100,
and A100, spend a similar percentage of simulation time
in each kernel. However, the V100 and MI250X GCD
spend a more significant percentage of runtime packing
arrays. On the V100, slow array packing results from the
low memory bandwidth of 900GB/s. We suspect that
slow array packing on the MI250X results from the 8MB
L2 cache, which leads to a high rate of L2 cache misses.
Kernel-level profiles of array packing routines show that
the MI250X has three times the L2 cache misses of an
A100. NVIDIA A100, H100, and GH200 have memory
bandwidths of 2TB/s, 3.35TB/s, and 4TB/s and L2
cache sizes of 40MB, 50MB, and 50MB. The higher
memory bandwidth and larger L2 cache both positively
impact packing performance.

Figure 7 shows the time spent in each of the most
expensive kernels and transposing arrays for a two-
phase example problem with 8 million grid cells in
3D. The consequences of memory availability are more
pronounced when grind times are shown than normalized
times. The NVIDIA V100 and AMD MI250X GCD
take 5% and 4.5% longer to perform the compute-bound
WENO kernel than an A100. The increased runtime on
the V100 results from it having 72% of the peak FLOPS
of an A100. On the MI250X, the increased runtime likely
results from the L2 cache being one-fifth the size of an
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Fig. 6: The percentage of normalized runtime spent in the most
expensive kernels and array packing for an example problem
with 8 million grid cells per device on five GPU devices: (1)
NV GH200, (2) NV H100 SXM, (3) NV A100 PCIe, (4) NV
V100 PCIe, and (5) AMD MI250X GCD. Numbers at the top of
each column indicate the simulation grind time in nanoseconds
per grid cell, PDE, and right-hand-side evaluation
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Fig. 7: Grind time spent in the most expensive kernels and
array packing for an example problem with 8 million grid
cells per device on five GPU devices: (1) NV GH200, (2) NV
H100 SXM, (3) NV A100 PCIe, (4) NV V100 PCIe, (5) AMD
MI250X GCD. The grind time is measured in nanoseconds per
grid cell, PDE, and right-hand-side evaluation.

A100. The MI250X makes up for its 8MB cache by
having 2.5 times the peak FLOPS of an A100. The
memory-bound Riemann kernel takes 48% and 103%
longer on a V100 and MI250X than an A100. The
most significant slowdown results from the time spent
packing arrays by the V100 and MI250X. For the same
problem size, the V100 and MI250X take 3.71 and 2.62
times longer to pack arrays than an A100. From this, we
conclude that optimizing data movement is an important
factor in the overall performance of GPUs.

VI. EXAMPLE SIMULATIONS

This section shows example simulations run on NVIDIA
and AMD GPUs, demonstrating our implementation.



Fig. 8: Vorticity around a shock droplet in air. The droplet’s
surface is blue, and the vorticity magnitude is shown in the
orange and red volume rendering around and behind the droplet.
Flow is from left to right, and darker colors correspond to higher
vorticity magnitudes.

Fig. 9: Vorticity shedding of a NACA 2412 airfoil with a
15 degree angle of attack. The airfoil is gray, and the vorticity
contour is colored by the span-wise vorticity, increasing in
magnitude from red to gray to blue.

A. Shock Droplet

The first example case shows a shock droplet interaction.
More specifically, a Mach 1.46 air shock impinging a
water droplet. This simulation domain was discretized into
2 billion grid cells and advanced through 100 thousand
time steps using 960 V100 GPUs in 2 hours on OLCF
Summit. Figure 8 shows the droplet surface in blue and
a volume rendering of vorticity behind the droplet in
orange.

B. Flow over an airfoil

The next example case shows the flow of air over
a NACA 2412 airfoil modeled using the ghost cell
immersed boundary method. This simulation resolves
500 grid cells in the chord length of the airfoil and
comprises a total of 2.25 billion grid cells. It was
advanced through 93 thousand time steps using 128 A100
GPUs in 19 hours on NCSA Delta. Figure 9 shows the
vortex shedding around the airfoil colored by the span-
wise vorticity.

C. Shock bubble cloud

Lastly, we show a shock bubble cloud interaction in water.
More specifically, the simulation shows a Mach 2.4 shock
in water interacting with a cloud of 75 air bubbles. The
simulation resolves 100 grid cells in the bubble diameter
at the initial condition and comprises 2 billion grid cells.
It was advanced through 15.6 thousand time steps
using 1024 MI250X GCDs in approximately 30 minutes.

Time

Fig. 10: A scale-resolved simulation of a collapsing bubble
cloud. The bubble surface is shown at increasing points in time
from left to right.

Figure 10 shows the deformation of the bubbles at
increasing times from left to right.

VII. CONCLUSION

Directive-based hardware offloading is a simple way
to develop portable codes for various GPU hardware
while maintaining the ability to execute CPU code
without modification. We developed implementation and
optimization strategies for efficiently using AMD and
NVIDIA GPUs with OpenACC offloading. Directive
optimizations and manual inlining result in speedups
of six and ten times. Hardware tuned array packing
with hipBLAS and compile time sizing of arrays in
private directives on MI250X hardware yield an
additional seven and thirty times speedup for select
kernels. Domain decomposition using 3D blocks results
in weak scaling performance to 50% of OLCF Summit
with 97% efficiency and 87% of OLCF Frontier with
95% efficiency. Strong scaling efficiencies of 84% and
81% are observed when the device count is increased by
8 and 16 on NVIDIA V100 and AMD MI250X hardware.
The strong scaling efficiency of MI250X is increased to
91% when GPU-aware MPI is used.
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CODE AVAILABILITY

MFC is an open-source project available under
the MIT license. Its source code is available at
github.com/MFlowCode/MFC. Additional information,
documentation, and example simulations are available at
mflowcode.github.io.
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