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Abstract

Deploying new supercomputers requires testing and evaluation via
application codes. Portable, user-friendly tools enable evaluation,
and the Multicomponent Flow Code (MFC), a computational fluid
dynamics (CFD) code, addresses this need. MFC is adorned with a
toolchain that automates input generation, compilation, batch job
submission, regression testing, and benchmarking. The toolchain
design enables users to evaluate compiler—hardware combinations
for correctness and performance with limited software engineer-
ing experience. As with other PDE solvers, wall time per spatially
discretized grid point serves as a figure of merit. We present MFC
benchmarking results for five generations of NVIDIA GPUs, three
generations of AMD GPUs, and various CPU architectures, utilizing
Intel, Cray, NVIDIA, AMD, and GNU compilers. These tests have
revealed compiler bugs and regressions on recent machines such
as Frontier and El Capitan. MFC has benchmarked approximately
50 compute devices and 5 flagship supercomputers.

CCS Concepts

» Hardware — Testing with distributed and parallel systems;
« Computing methodologies — Massively parallel and high-
performance simulations; - Networks — Network performance
evaluation; « Applied computing — Physics.
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1 Introduction

Supercomputer tests and benchmarks rely on portable and perfor-
mant software applications to make meaningful comparisons be-
tween new and existing systems and hardware. This work presents
MFC [9] as an application that addresses this need. MFC is a GPU-
accelerated [25], feature-rich [35], portable [37], and user-friendly
computational fluid dynamics (CFD) code used to test and bench-
mark five generations of NVIDIA GPUs, three generations of AMD
GPUs, and many CPUs.

MFC is a multiphysics flow solver that has been used to simulate
compressible multi-species, phase, and chemically reacting fluid
flows [7, 8, 10, 11, 24]. The spatiotemporal requirements of com-
pressible multiphysics flow simulations have driven the authors to
prioritize performance and portability in the design of MFC. The
background of researchers in the field has also led us to prioritize
user-friendliness and approachability in MFC’s design. This work
describes how MFC’s predictable performance and user-friendly
interface make it a reliable and approachable application for testing
and benchmarking new supercomputers.

The MFC toolchain is designed to be user-friendly and portable,
helping users test and benchmark HPC systems with minimal
knowledge of the underlying hardware or software. The user inter-
acts with the toolchain via a wrapper script that requires a one-time
setup to add support for an alternative system. The user completes
setup by identifying and specifying the required Lmod [20] mod-
ules and shell environment variables. The final step is to create a
system-specific job-submission template file that supports multiple
schedulers and their idiosyncrasies. The bash wrapper automates
the process of loading modules, building MFC and its dependencies,
running regression tests, and benchmarking the code once the ini-
tial setup is complete. The toolchain is designed to be easily adapted
and updated by users. This strategy lets users modify test cases
and benchmarks to evaluate code and language features, confirm
system-specific correctness, and identify performance bottlenecks.

We summarize MFC’s performance with a single figure of merit,
grindtime: nanoseconds of wall time per grid point, equation, and
right-hand-side evaluation. Here, the grid points represent the spa-
tial discretization points of the simulation domain, the equations
refer to the system of partial differential equations solved by the
code, and the right-hand side evaluations denote the operations
performed to advance the solution in time. This definition provides
a figure that describes the time it takes to perform the smallest mea-
surable unit of work in an application that solves time-dependent
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Figure 1: The MFC toolchain and its connectivity.

partial differential equations (PDEs). Defining the grindtime in
terms of wall time means it follows strong scaling trends when
increasing device count. We compare a single GPU driven by one
MPI rank with a single CPU die driven by multiple. Expressing
performance per smallest measurable unit makes grindtime inde-
pendent of problem size, the number of physical model equations,
and the time-integration scheme.

The grindtime measurement accounts for MPI communication
and host-device transfers relevant to network, CPU, and offload
device (e.g., GPU) performance. It neglects the time spent perform-
ing code initialization and I/O operations. I/O costs are not directly
benchmarked in the present work as they are sufficiently small
compared to compute costs. Still, MFC writes an I/O profile for
each case, which can be used to evaluate I/O performance or bot-
tlenecks if unexpected behavior is observed. Defining grindtime in
this way evaluates how hardware and network performance impact
the run-time of core compute kernels.

Manuscript structure: MFC’s suggested role in the existing land-
scape of HPC testing and benchmarking tools is described in sec-
tion 2. Section 3 describes the steps for testing and benchmarking
a supercomputer with MFC. Section 4 and section 5 provide details
on how users can extend the testing and benchmarking capabilities
of MFC and give examples of bugs and performance bottlenecks
identified by each tool. Application of MFC as a tool for system
deployment and testing via a standardized benchmark case, weak
scaling, and strong scaling is described in section 6. Limitations,
implications, and final thoughts are given in section 7 and section 8.

2 Existing tools

Many tools support the benchmarking of HPC systems. One such
tool is the High-Performance Linpack (HPL) benchmark [14], which
solves a dense system of linear equations via LU factorization with
partial pivoting. The HPL benchmark estimates a supercomputer’s
maximum sustained performance, which informs the semiannual
TOP500 ranking [14]. HPL is widely accepted but limited in scope,
representing only a fraction of user applications. The SPEChpc
benchmark suite [17] was created, in part, as a response to this

Table 1: List of relevant automated tools accessible via the
wrapper script mfc. sh. The tools in this list are in the order a
user would typically use them to test and benchmark a new
system with MFC. Each tool has additional command-line
options accessible via ./mfc.sh <tool> --help.

Tool Description

load Load modules and initialize environment
build Build MFC’s source and dependencies
test Run the regression test suite

bench Run the benchmark suite

bench_diff Compare benchmark results

run Run a user-defined case file

limitation. The SPEChpc benchmarks comprise multiple maintained
user applications that vary in subject matter, numerical methods,
and programming models, providing a more holistic measure of
system performance.

Benchmarking and automation tools can help users test HPC
systems. A non-exhaustive list of such tools includes ReFrame [12],
JUBE [19], Ramble [16], BenchPRO [29], and OLCF Test Harness [22].
Each tool has strengths, but all aim to provide automated interfaces
for testing and benchmarking supercomputers and their hardware.
MEC itself is not a suitable replacement for any of these tools. MFC
is, however, a suitable application for testing and benchmarking
HPC systems with these tools. The user-friendly interface and auto-
mated building, testing, and benchmarking processes in MFC make
it an easy-to-integrate candidate for use with these existing tools.

3 Tooling summary and usage

The core of MFC’s user-friendly interface is the bash wrapper
mfc. sh that provides quick access to all of MFC’s automated tools.
The control flow of the toolchain is shown in fig. 1, and table 1
lists the tools for testing and benchmarking a new system. The
following sections describe how a user would typically use each of
these tools to test and benchmark a new system using MFC.
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Step 1: System and environment setup. The first step in testing and
benchmarking a new system with MFC is to set up the compute
environment. Setting up the environment starts with identifying
the relevant modules to load and environment variables to set. The
required modules for currently supported clusters and supercom-
puters are listed in toolchain/modules and are easy to extend.
Listing 1 shows an example entry for NCSA Delta, which supports
CPU and GPU builds with different modules and environment vari-
ables. Line 1 assigns the system name to the identifier d to be used
in the command line interface. Modules and environment vari-
ables used by both CPU and GPU builds are stored in the d-all
entry and loaded first. The d-cpu and d-gpu entries store modules
and environment variables specific to building and running MFC
on CPU or GPU hardware. Once the relevant modules and envi-
ronment variables are identified, the user can load them with the
command source ./mfc.sh load. This command prompts the
user for the system identifier (for example (d) for NCSA Delta), and
configuration ((c | cpu) for CPU builds and (g | gpu) for GPU
builds). Executing source ./mfc.sh load is configured to purge
loaded modules and load the modules and environment variables
appropriate for that system.

Listing 1: Example module and environment variables loaded
into the user’s environment for NCSA Delta.

od NCSA Delta
d-all python/3.11.6
; d-cpu gcc/11.4.0 openmpi
. d-gpu nvhpc/24.1 cuda/12.3.0 openmpi/4.1.5+cuda
cmake
;s d-gpu CC=nvc CXX=nvc++ FC=nvfortran
s d-gpu MFC_CUDA_CC=80, 86

The final step in setting up the environment is to create a system-
specific template file in the toolchain/templates/ directory. MFC
uses the Mako templating library [3] for system-specific templates
that create Bash scripts, which can run MFC executables in interac-
tive or batch mode, depending on the user’s needs.

System-specific templates are used because they provide a way
to support multiple scheduling systems, such as Slurm, PBS, LSF,
and Flux, without requiring future users to be familiar with the
details of the scheduling system. Templates can also set additional
run-time environment variables and settings that are irrelevant
to compilation. For example, the template for OLCF Frontier sets
the environment variable MPTCH_GPU_SUPPORT_ENABLED=1 to acti-
vate GPU-aware MPI at run-time. The template also sets ulimit
-s unlimited to expand the stack size for simulating particularly
large problems. The template files help the toolchain add the com-
mands to perform high-level and kernel-level profiles to interactive
and batch scripts. This approach removes the need for direct user
interaction with profiling tools. Once the module and template
files are created for the new system, one can build MFC and its
dependencies.

Step 2: Building. Once the relevant modules are loaded and envi-
ronment variables set, the user can build MFC and its dependencies
with the command . /mfc.sh build <config>, where <config>
is ——gpu acc|mp for GPU builds and --no-gpu for CPU builds.
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GPU acceleration is provided via OpenACC [34], which supports
GPU offloading for NVIDIA and AMD GPUs, or OpenMP [23], the
latter being better supported by compilers targeting AMD and In-
tel GPUs. MFC’s dependencies vary by system and hardware. All
MFC simulations depend on silo and hdf5 for visualization and
post-processing. silo and hdf5 are fetched and compiled automati-
cally by CMake for the specific hardware and system configuration.
Some features in MFC rely on fast Fourier transforms (FFTs), which
are provided by FFTW [15] for CPU builds, cuFFT [21] for NVIDIA
GPU builds, and hipFFT [1] for AMD GPU builds. CMake automat-
ically detects the hardware and system configuration and builds
the appropriate Fourier transform library. Then, the user tests the
build.

Step 3: Regression testing: With the system environment set up
and the source code built, MFC’s test suite can now be run to
identify any run-time errors or correctness bugs resulting from the
hardware-software configuration. The test suite is run with the
command ./mfc.sh test -- -c <system> where <system> is
the name of the mako template file created in step 1. At the time of
writing, MFC’s test suite comprises approximately 500 test cases
that cover most available features. Section 4 describes details of the
regression suite, including how cases are added, how results are
compared, and how the suite has aided in identifying and correcting
compiler-hardware bugs. The user can proceed to the benchmarking
step once a hardware-compiler combination has been tested for
correctness.

Step 4: Benchmarking. MFC contains two benchmarking tools that
can be used to measure the performance of hardware-compiler
combinations. The first is a standardized benchmark case with
documented performance on 49 different hardware platforms, pro-
viding a quick way to compare performance across systems. This
benchmark case is described in more detail in section 6.1. The sec-
ond benchmarking tool is an automated benchmark suite that tests
a broader range of MFC’s functionality and summarizes the perfor-
mance for each test in a single yaml file. The benchmarks are exe-
cuted via . /mfc.sh bench --mem <gb/rank> -o <output>.yml
-- -c <system> -n <nranks> <device_opts>. The command
line arguments are described in table 2.

Table 2: Arguments for the automated benchmarks.

Flag Argument Description

Memory (in GB) of problem size per
rank

Output yaml file with summary results
Name of Mako template (Step 1)

MPI ranks used for benchmarking
--gpu (GPU); --no-gpu (CPU)

--mem <gb/rank>
-0 <output>
-c <system>
-n  <nranks>
n/a <device_opts>

The performance results for the benchmarks on different systems
can be compared and summarized by running . /mfc. sh bench_diff
<ref_ouput>.yml <output>.yml, where <ref_output>.yml is
the output file from running the benchmark suite on a reference
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system. After steps 1-4, the user can be confident that the hardware—
compiler combination produces correct results and expected per-
formance, and proceed to use MFC for their intended scientific use
case.

Step 5: Running. With correctness and performance verified, the
user can create a user-defined case file and run it with . /mfc.sh
run. The details for creating and running user-defined cases are
beyond the scope of this work, but are described in detail in the
MFC documentation’.

4 Regression test details

The MFC regression suite tests over 500 unique cases (at the time
of writing) and is designed to be readily extended and maintained
by users. Each test case is based on a generic case file that can
be modified using a stack mechanism to add or replace variables,
enabling or disabling any MFC feature. Once a case is defined, an
eight-digit universally unique identifier (UUID) is associated with it,
and a directory in the source is created to store the case’s golden file
and associated metadata, including device information and build
configuration, directly via CMake. The user can create the golden
file and metadata by running the test with ./mfc.sh test -o
<UUID> --generate, where <UUID> is the unique identifier for the
test case. More information on each of these steps is provided below.

4.1 Test case definition

Listing 2 demonstrates how a new codebase feature can be added
to the MFC test suite. In this case, we call alter_igr() to create
a span of tests that cover the relevant adorning features of MFC;
24 are made here by calling alter_igr() with six unique base
stacks. Line 2 adds ‘igr’: ‘T’ and three other parameters to run
all test cases that use it to the case stack, and adds ‘IGR’ to the
human-readable trace that describes the case. Line 4 defines a loop
over the available numerics added to the case stack and human-
readable trace in line 5. Lines 6 and 7 define the test cases for two
available iterative linear solvers via the function define_case_d()
with the case stack, a human-readable trace entry, and a dictionary
of additional variables to set in the case file. The contents of lines 2
and 5 are popped from the stack in lines 9 and 11 and return the
stack to its original state. The stack-based approach enables ready
extension and modification of the test suite without requiring user
knowledge of other code features or their functionality. The human-
readable trace appended by the function alter_igr() is printed
to the command line, along with the case UUID, allowing the user
to identify the case and its parameters.

4.2 Golden file generation and maintenance

Golden files are reference output data used to verify the correctness
of numerical simulations by comparing current test results against
previously validated solutions. With MFC’s toolchain, they are cre-
ated, along with their associated metadata, by running the test case
as ./mfc.sh test -o <UUID> --generate, where <UUID> is the
case identifier. This command executes the test, creating the golden
file golden. txt and the metadata file golden-metadata. txt. These

Imflowcode.github.io/documentation
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files use MFC’s serial output formatting and record the CMake con-
figuration, system information, and hardware information. Each
line in golden. txt contains a flattened array storing a single sim-
ulation output. This format enables easy comparison of the output
of different systems while minimizing the size of the golden files in
version control. Once a golden file is created, test suite execution
compares the code output to the golden file. It reports instances
where an absolute or relative error exceeds a user-defined thresh-
old. By default, an absolute and relative test tolerance of 1 X 10712
is used for double precision computations. This tolerance reflects
floating-point round-off and non-IEEE-754-compliant optimized
floating-point operations at run time.

If test cases are changed so that other outputs must be added
to the golden file, the user can update it. One updates golden files
as ./mfc.sh test -o <UUID> --add-new-variables. Executing
this command adds new tracked variables to the golden file without
modifying the existing values, thereby maintaining the integrity of
the original data.

4.3 System and compiler bugs identified

The ability to build and test code that leverages a wide breadth of
modern Fortran’s features has enabled developers to identify and
file tickets for at least 15 compiler and system bugs and regressions.
The most common bugs identified are related to improper han-
dling of module variables and unexpected behavior of the ! $acc
routine seqandhost_data use_device directives. Once a bug is
identified, a minimum working example can be created to open for-
mal tickets with compiler vendors, aiding in their timely resolution.
These bugs are relevant to core features of the Fortran language
and OpenACC offloading, making their identification valuable to
both MFC developers and the broader HPC community. Automated
testing across core language features has highlighted idiosyncrasies
among compilers using the same GPU offload model. The auto-
mated test suite has also proven invaluable in identifying bugs in
the MFC source code itself, often due to refactoring that improves
the overall quality of the source.

5 Performance test details

At the time of writing, MFC’s automated benchmark suite contains
five test cases that cover its most commonly used features. Test cases
for new features can be added easily to the benchmark suite by cre-
ating a new directory with a case file in the benchmarks/ directory
and adding the case to the toolchain/benchmarks.yml file. Each
benchmark case accepts an argument defining the approximate
problem size per rank in gigabytes of memory and automatically
scales to any number of MPI ranks. The summary data for each
benchmark case is stored in a yaml file, which contains the total
wall time (in seconds), grindtime, and a summary of the invoca-
tion used to run the benchmark. The relative performance of two
systems can be compared automatically using MFC’s bench_diff
tool, which prints a human-readable summary table. All benchmark
cases use MFC’s --case-optimization flag to specify certain case
parameters as compile-time constants, enabling more aggressive
compiler optimizations. The --case-optimization flag results in
approximately a ten-fold improvement in grindtime performance,
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Listing 2: Code snippet demonstrating how the stack-based approach adds a new code feature to the test suite.

1 def alter_igr():

stack.push('IGR',{'igr': 'T', 'alf_factor': 10,

' for order in [3, 5]:

'num_igr_iters': 10, 'num_igr_warm_start_iters': 10})

5 stack.push(f"igr_order={order}", {'igr_order': order})
6 cases.append(define_case_d(stack, 'Jacobi', {'igr_iter_solver': 13}))

if order ==

cases.append(define_case_d(stack, 'Gauss Seidel', {'igr_iter_solver': 2}))

9 stack.pop()

11 stack.pop()

though speedup varies depending on the compiler and hardware
used.

5.1 Performance bottlenecks identified

The automated benchmark suite has identified several performance
regressions and bottlenecks, particularly on new architectures. The
largest performance impacts occur when compilers cannot inline
subroutines called within GPU compute regions. MFC uses nega-
tive indices to simplify array indexing when needed. When allo-
catable variables with non-default lower bounds are not defined
at compile time, NVIDIA’s NVHPC compiler does not mark them
for inlining unless the compiler flag -Minline=reshape is spec-
ified, enabling speedups. Such subroutines are easily introduced
when attempting to refactor code, so automatically identifying
the resulting performance regression is valuable in maintaining
MFC’s performance. We observe additional inlining-related perfor-
mance regressions with Cray CCE when using the OpenACC ! $acc
routine seq offloading directives. In some isolated cases, the CCE
compiler chooses not to inline the subroutine unless the !$acc
routine seq directive is replaced with the compiler hint ! $DIR
INLINEALWAYS <routine_name>. The instances in which the CCE
1$DIR INLINEALWAYS hint is needed in place of the standard of-
fload directive are not always obvious to developers, so automated
benchmarking is a useful tool for identifying them.

Additional performance bottlenecks can be introduced in spe-
cific kernels where OpenACC struggles to produce efficient code.
Such bottlenecks can be due to large register usage or compiler
choices. For example, thread-private arrays that lack a known size
at compile time require expensive memory reallocation for each
independent loop when using the CCE compiler on AMD GPU
devices. Reordering the contents of large kernels can also result
in performance regressions if the resulting code uses registers less
efficiently for thread-private variables. Due to its relatively small
cache sizes, kernel ordering for efficient register use is especially
relevant with AMD hardware. These kernel-specific performance
bottlenecks can be challenging to identify when developing code.
Automated benchmarking quickly identifies problems and provides
a starting point for developers to determine the cause.

These performance regressions and bottlenecks identified by
benchmarking demonstrate the value of automated benchmarks.
Desirable yet straightforward changes, such as refactoring, can

cause substantial performance regressions that are not apparent
during development. MFC’s automated benchmark suite offers a
user-friendly approach to evaluating code performance and ad-
dressing identified regressions.

6 MEFC as a tool for deployment and testing

MFC’s portability and well-defined performance metrics make it
useful for evaluating emerging supercomputers and hardware-
software combinations. In the following sections, we present a
standardized benchmark case with documented performance on
nearly 50 different hardware platforms and strong and weak scaling
results that serve as a reference for evaluating supercomputers.

6.1 A standardized benchmark case

Benchmark results are collected for a standardized three-dimensional
(3D) CFD test problem. The test problem simulates a two-phase
flow (such as gas and liquid interaction) using a well-established
mathematical model entailing a system of eight coupled PDEs. The
equations are solved using high-order numerical methods: fifth-
order accurate WENO (weighted essentially non-oscillatory) spatial
reconstructions for shock wave treatment, the HLLC (Harten-Lax-
van Leer contact) Riemann solver for finite volume flux compu-
tation, and a third-order accurate Runge-Kutta method for time
advancement. This combination of numerical methods is widely
adopted in the CFD community for solving compressible and multi-
phase problems [2, 4, 5, 13, 27]. The benchmark case is maintained in
MFC’s version control under examples/3D_performance_test/
and can be executed on any target system to evaluate performance.
Table 3 lists the grindtime performance of the standardized
benchmark case run in double precision on a range of CPU, GPU,
and APU architectures. We observe similar grindtimes when solv-
ing related problems, such as the inviscid Euler equations (4 PDEs)
and the six-equation multiphase flow model [26] (10 PDEs). We
report grindtimes using the compiler that produced the best re-
sults for each system. Current tested compilers include Cray’s CCE,
NVIDIA’s NVHPC, AMD’s AOCC, Intel’s OneAPI, and GNU GCC.
We benchmark nominally single-precision GPUs in double preci-
sion using hardware or compiler conversion. Results for GPUs with
more than one compute die (for example, the AMD MI250X and
MI300A) are presented for the entire device. Parallelism is achieved
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Table 3: Observed grindtime (called “Time”) performance (nanoseconds per grid cell, equation, and right-hand side evaluation)
for a standardized compressible CFD test problem. Results are shown for various CPU, GPU, and APU architectures. The best
performing compiler is shown in each case, with GNU, Intel, NVIDIA, AMD, and CCE tested as appropriate. Smaller numbers
are better. All results are collected using the compiler that performs best for each hardware. CPU results are parallelized via
MPI, with each rank bound to a single core. The results can be interpreted as providing relative performance between single

GPUs and single CPU sockets.

Hardware Type Usage Time ‘ Hardware Type Usage Time
NVIDIA GH200 APU 1GPU 0.32 NVIDIA A10 GPU 1GPU 4.3
NVIDIA H100 SXM5 GPU 1 GPU 0.38 AMD EPYC 7713 CPU 64 cores 5.0
NVIDIA H100 PCle GPU 1GPU 0.45 Intel Xeon 8480CL CPU 56 cores 5.0
AMD MI250X GPU 1GPU 0.55 Intel Xeon 6454S CPU 32 cores 5.6
AMD MI300A APU 1APU 0.57 Intel Xeon 8462Y+ CPU 32 cores 6.2
NVIDIA A100 GPU 1GPU 0.62 Intel Xeon 6548Y+ CPU 32cores 6.6
NVIDIA V100 GPU 1GPU 0.99 Intel Xeon 8352Y CPU 32 cores 6.6
NVIDIA A30 GPU 1GPU 1.1 Ampere Altra Q80-28 CPU 80 cores 6.8
AMD EPYC 9965 CPU 192 cores 1.2 AMD EPYC 7513 CPU 32cores 7.4
AMD MI100 GPU 1GPU 1.4 Intel Xeon 8268 CPU 24 cores 7.5
AMD EPYC 9755 CPU 128 cores 1.4 AMD EPYC 7452 CPU 32 cores 8.4
Intel Xeon 6980P CPU 128 cores 1.4 NVIDIA T4 GPU 1GPU 8.8
NVIDIA L40S GPU 1GPU 1.7 Intel Xeon 8160 CPU 24 cores 8.9
AMD EPYC 9654 CPU 96 cores 1.7 IBM Power10 CPU 24 cores 10
Intel Xeon 6960P CPU 72 cores 1.7 AMD EPYC 7401 CPU 24 cores 10
NVIDIA P100 GPU 1GPU 2.4 Intel Xeon 6226 CPU 12 cores 17
Intel Xeon 8592+ CPU 64 cores 2.6 Apple M1 Max CPU 10 cores 20
Intel Xeon 6900E CPU 192 cores 2.6 IBM Power9 CPU 20 cores 21
AMD EPYC 9534 CPU 64 cores 2.7 Cavium ThunderX2 CPU 32cores 21
NVIDIA A40 GPU 1GPU 33 Arm Cortex-A78AE CPU 16 cores 25
Intel Xeon Max 9468 CPU 48 cores 3.5 Intel Xeon E5-2650V4 CPU 12 cores 27
NVIDIA Grace CPU CPU 72 cores 3.7 Apple M2 CPU  8cores 32
NVIDIA RTX6000 GPU 1GPU 3.9 Intel Xeon E7-4850V3  CPU 14 cores 34
AMD EPYC 7763 CPU 64 cores 4.1 Fujitsu A64FX CPU 48 cores 63
Intel Xeon 6740E CPU 92 cores 4.2

using MPL for CPUs, each MPI rank is bound to a core. CPUs may
have more cores than the results reported for. However, results
are reported for the core count providing optimal performance.
Additional details on the hardware, compiler, and systems used are
available in the MFC documentation®. This collection of results is a
reference for users to compare the performance of their hardware—
software combinations against a range of systems spanning several
generations.

6.2 Weak scaling

Weak scaling tests in MFC are performed using the same stan-
dardized case described in section 6.1 with modified discretization
and domain boundaries. The domain boundaries and associated
discretization are selected so that each MPI rank holds a local do-
main with a perfect cube of grid cells. Uniform local discretization
ensures uniform communication costs. Table 4 lists example MPI
discretizations and problem sizes used to collect the weak scaling
results for OLCF Frontier in fig. 2. The Frontier weak scaling test is
conducted for a problem size of 200% grid cells per MI250X GCD,

2mflowcode. github.io/documentation/md_expectedPerformance. html

which amounts to about 16 GB of HBM2e memory. The size is se-
lected to be large enough to saturate the memory bandwidth of
the MI250X GCDs to reach MFC’s peak performance. Weak scaling
performance is measured using the previously defined grindtime
metric. The grindtime multiplied by the number of ranks should
remain constant across problem sizes for ideal weak scaling, which
we observe in all cases. The file-per-process I/O strategy described
in [37] reduces I/O overhead in weak scaling tests. This approach
is used when the number of MPI ranks exceeds 10* or the total
problem size exceeds 100 billion spatially discretized grid cells.

Figure 2 shows weak scaling results for MFC on four leadership-
class supercomputers. Three of the systems shown (OLCF Sum-
mit [30], OLCF Frontier [33], and LLNL El Capitan [32]) have held
the number one position on the TOP500 list, and CSCS Alps [31]
is in the top ten and is the largest Grace Hopper-based machine
online at the time of writing. We observe weak scaling efficiencies
above 95% for all systems, spanning three orders of magnitude
in problem size and scaling to full systems. Table 5 shows each
system’s base case, limit case, and efficiency. MFC’s consistent scal-
ing performance across these systems makes it a suitable tool for
testing weak scaling performance.
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Table 4: MPI decomposition and discretization details for a
weak scaling test on OLCF Frontier. Each MPI rank has alocal
domain of 200 x 200 x 200 grid cells so that all halo exchanges
are equivalent. Approximately 16 GB of HBM2e memory is
used per MI250X GCD, or one quarter of the available HBM2e
memory.

# Ranks Decomposition Discretization # Cells [B]
128 4X4x%x38 800 X 800 X 1600 1.02
384 6X8X%X38 1200 X 1600 X 1600 3.07
1024 8 X8X16 1600 X 1600 X 3200 8.19
3072 12X 16 X 16 2400 X 3200 X 3200 24.6

3200 x 3200 X 6400 65.5
4800 X 6400 X 6400 197
6400 X 6400 X 12800 524

8192 16 X 16 X 32
24576 24X 32X 32
65536 32X 32X 64
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Figure 2: Weak scaling results for MFC on five flagship su-
percomputers. Near-ideal scaling is observed for multiple
generations of AMD and NVIDIA hardware. Table 5 shows
the details of each system’s base case, limit case, and effi-
ciency.
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Table 5: Weak scaling efficiencies and device counts for the
systems shown in fig. 2. Near-ideal efficiency is observed over
three orders of magnitude in problem size for all systems
across multiple generations of compute devices from NVIDIA
and AMD.

System Base case  Limit case  Efficiency
OLCF Summit 216 GPUs 13825 GPUs 97%
CSCS Alps 64 GPUs 9200 GPUs 97%
OLCF Frontier 128 GCDs 65536 GCDs 95%
LLNL El Capitan =~ 64 GPUs 32768 GPUs 99%

6.3 Strong scaling

Scaling tests in MFC are performed using the standardized case of
section 6.1 with different spatial grid discretizations. Performance
is measured using the previously defined grindtime, which should
scale inversely with the number of processors used for a constant
problem size. The problem size for the base case is selected to
saturate the available GPU memory of 8 MPI ranks. Saturating the
device memory minimizes relative communication cost in the base
case. Using 8 MPI ranks enables uniform MPI communication across
the three spatial directions. The maximum problem size per GCD
on OLCF Frontier is approximately 32 M grid cells. So, an initial
problem size of 634 X 634 X 634 is used for scaling tests. This results
in 31.9 M grid cells per device in the 8 rank base case. MFC supports
GPU-Aware MPI (via RDMA), which is not enabled by default. It
can be enabled by adding ‘rdma_mpi’: ‘T’ to the input case file
when the machine supports it. Figure 3 (a) shows that GPU-aware
MPI improves strong scaling efficiency on Frontier.

The strong scaling results for CSCS Alps in fig. 3 (b) use the
alternative numerics described in [36] that enable use of a larger
base case. The larger base case is discretized using a 1600® spatial
grid, which results in 512 M grid cells per device in the 8 rank
base case. The larger base case shows preferable scaling efficiency
on CSCS Alps. However, the trend is similar to that observed on
OLCEF Frontier. MFC’s predictable scaling performance trends make
it a valuable tool for evaluating the network performance of new
supercomputers.

7 Limitations of current work

MFC’s suitability as a tool for testing and benchmarking supercom-
puters has limitations. The primary limitation is the reliance on
compiler support for directives, either OpenMP or OpenACC, for
offloading to non-CPU devices. Currently, OpenMP and OpenACC
provide limited or no support for more esoteric computing devices,
such as Cerebras wafer-scale engines, Graphcore IPUs, NextSili-
con Maverick-2, or quantum computers. Researchers are starting
to use these devices for stencil computations similar to those in
MEFC [6, 18, 28], though the current implementations rely on spe-
cialized compilers and lack portability. Until these architectures
are widely adopted and garner mainstream compiler support, MFC
will be limited to testing CPU, GPU, and APU devices from major
vendors.
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Figure 3: Strong scaling performance on (a) OLCF Frontier
and (b) CSCS Alps. The speedup is calculated as the ratio of
the grindtime for a given processor count to the grindtime of
the 8 rank baseline. The impact of using GPU-Aware MPI to
reduce communication overhead and improve strong scaling
efficiency is shown in the OLCF Frontier results. Extension
of near-ideal strong scaling behavior follows from using a
larger base case on CSCS Alps.

8 Conclusion

User-friendly applications are essential for evaluating the real-
world performance of emerging supercomputers. MFC’s portabil-
ity, well-defined performance metrics, and automated testing suite
make it suitable for such evaluations. Any user can run automated
testing and benchmarking after a straightforward setup process.
This process abstracts away the details of the hardware and system.
The automated tools of MFC have been used to identify and report
over 15 compiler and system bugs. The results have identified nu-
merous performance regressions when systems are updated. MFC
has also shown high-quality scaling performance across multiple
generations of GPU hardware from NVIDIA and AMD. These data
serve as a reference for evaluating the performance of new comput-
ers. These features and results establish MFC as a useful tool that
nearly any user can use to test and benchmark supercomputers or
incorporate into existing benchmarking suites.
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