
Simulating many-engine spacecraft: Exceeding 1 quadrillion
degrees of freedom via information geometric regularization

Benjamin Wilfong
School of Computational Science and

Engineering
Georgia Institute of Technology

Atlanta, GA, USA
bwilfong3@gatech.edu

Anand Radhakrishnan
School of Computational Science and

Engineering
Georgia Institute of Technology

Atlanta, GA, USA
aradhakr34@gatech.edu

Henry Le Berre
School of Computational Science and

Engineering
Georgia Institute of Technology

Atlanta, GA, USA
henryleberre@gatech.edu

Daniel Vickers
School of Computational Science and

Engineering
Georgia Institute of Technology

Atlanta, GA, USA
dvickers6@gatech.edu

Tanush Prathi
School of Computational Science and

Engineering
Georgia Institute of Technology

Atlanta, GA, USA
tprathi3@gatech.edu

Nikolaos Tselepidis
NVIDIA

Zurich, Switzerland
ntselepidis@nvidia.com

Benedikt Dorschner
NVIDIA

Zurich, Switzerland
bdorschner@nvidia.com

Reuben Budiardja∗
Oak Ridge National Laboratory

Oak Ridge, TN, USA
budiardjard@ornl.gov

Brian Cornille
AMD

Naperville, IL, USA
brian.cornille@amd.com

Stephen Abbott
Hewlett Packard Enterprise (HPE)

St. Paul, MN, USA
stephen.abbott@hpe.com

Florian Schäfer†
Courant Institute of Mathematical

Sciences
New York University
New York, NY, USA

florian.schaefer@nyu.edu

Spencer Bryngelson†
School of Computational Science and

Engineering
Georgia Institute of Technology

Atlanta, GA, USA
shb@gatech.edu

Abstract
We present an optimized implementation of the recently proposed
information geometric regularization (IGR) for unprecedented scale
simulation of compressible fluid flows applied tomulti-engine space-
craft boosters. We improve upon state-of-the-art computational
fluid dynamics (CFD) techniques in terms of computational cost,
memory footprint, and energy-to-solution metrics. Unified memory
on coupled CPU–GPU or APU platforms increases problem size
with negligible overhead. Mixed half/single-precision storage and
computation are used on well-conditioned numerics. We simulate
flow at 200 trillion grid points and 1 quadrillion degrees of free-
dom, exceeding the current record by a factor of 20. A factor of 4
∗This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE). The US government
retains and the publisher, by accepting the article for publication, acknowledges that
the US government retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript, or allow others to do
so, for US government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan.
†Equal contribution

This work is licensed under a Creative Commons Attribution 4.0 International License.
SC ’25, St Louis, MO, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1466-5/25/11
https://doi.org/10.1145/3712285.3771783

wall-time speedup is achieved over optimized baselines. Ideal weak
scaling is observed on OLCF Frontier, LLNL El Capitan, and CSCS
Alps using the full systems. Strong scaling is near ideal at extreme
conditions, including 80% efficiency on CSCS Alps with an 8 node
baseline and stretching to the full system.

CCS Concepts
• Applied computing→ Physics; • Computing methodologies
→Massively parallel and high-performance simulations.

Keywords
CFD, regularization, exascale, unified memory
ACM Reference Format:
Benjamin Wilfong, Anand Radhakrishnan, Henry Le Berre, Daniel Vickers,
Tanush Prathi, Nikolaos Tselepidis, Benedikt Dorschner, Reuben Budiardja,
Brian Cornille, Stephen Abbott, Florian Schäfer, and Spencer Bryngelson.
2025. Simulating many-engine spacecraft: Exceeding 1 quadrillion degrees
of freedom via information geometric regularization. In The International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC ’25), November 16–21, 2025, St Louis, MO, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3712285.3771783

1 Justification for ACM Gordon Bell Prize
Largest compressible computational fluid dynamics simulation, ex-
ceeding 1 quadrillion degrees of freedom and a factor of 20 beyond

14

https://orcid.org/0009-0001-0074-6668
https://orcid.org/0000-0001-5127-2741
https://orcid.org/0000-0002-4781-9502
https://orcid.org/0000-0002-5231-5528
https://orcid.org/0009-0000-9965-0844
https://orcid.org/0009-0008-5896-2487
https://orcid.org/0000-0001-8926-7542
https://orcid.org/0000-0003-0395-8532
https://orcid.org/0000-0002-1461-106X
https://orcid.org/0009-0000-1028-819X
https://orcid.org/0000-0002-4891-0172
https://orcid.org/0000-0003-1750-7265
http://energy.gov/downloads/doe-public-access-plan
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3712285.3771783
https://doi.org/10.1145/3712285.3771783
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712285.3771783&domain=pdf&date_stamp=2025-11-15


SC ’25, November 16–21, 2025, St Louis, MO, USA Wilfong et al.

state-of-the-art. Enabled by a large-scale optimized use of invis-
cid (information geometric) regularization. Time-to-solution and
energy-to-solution decrease by up to a factor of 4 and 5.4 in double
precision, respectively, with greater decreases in single and mixed
precision.

2 Performance Attributes

Table 1: Summary of Performance Attributes

Performance attribute This submission

Category of Achievement Scalability, problem size, time-to-solution
Type of Method Used Finite volume w/ information regularization
Results Reported Based On Whole application including I/O
Precision Reported Mixed (FP16/32), Single, Double
System Scale Full system
Measurement Mechanism Timers, FLOPs, Power management counters

3 Overview of the Problem
The 21st century witnesses a “new space race” [19] driven by private
companies replacing government agencies in providing launch
services. The resulting drop in launch cost enabled many business
models, ranging from satellites to space manufacturing [10]. The
new emphasis on cost efficiency motivated innovations in rocket
design, such as reusing rocket stages and leveraging economies of
scale.

An example of such innovations is the use of many-engine rock-
ets. Five large F-1 engines powered the first stage of the Saturn V
rocket. Their size was not constrained by road width or transporta-
tion logistics but dictated by engineering requirements. Instead,
SpaceX Super Heavy, the first stage of Starship, is powered by 33
smaller Raptor engines. This has multiple advantages. The econ-
omy of scale benefits the production of a larger number of smaller
engines, and their relatively compact size allows their transport
via standard road infrastructure. The multitude of engines also pro-
vides a degree of redundancy, and a small number of engine failures
can be compensated for without risking mission success. Upon
reuse, the defective engines can be replaced. Further, when landing
the Super Heavy after flight, thrust can be reduced by turning off
individual engines.

Large arrays of small engines create new design challenges. The
exhaust plumes of densely packed engines can interact, propelling
hot gas toward the rocket base and heating it. This so-called base
heating can cause mission failure [18], mandating heat shields on
the rocket base that increase weight and cost.

Mitigating base heating most cost-effectively, in terms of both
dollars and weight, requires understanding the mechanism by
which engine exhaust is reflected towards the rocket and identify-
ing which parts are most affected. A key difficulty in experimental
approaches to understanding plume recirculation is that it depends
on numerous parameters, including varying ambient pressure as
the rocket traverses the atmosphere and engine thrust vectoring
for steering. A detailed flow field characterization under a broad

Code available at https://github.com/MFlowCode/MFC

range of conditions is only feasible with numerical simulations.
They even allow probing the impacts of changes to the rocket de-
sign. Prior work on the numerical simulation of interacting rocket
plumes was limited to small numbers (up to 7) of rocket engines
and limited resolution (up to ≈ 10 million grid points) [18, 21, 27].
Our work addresses this shortcoming by utilizing the latest flagship
exascale systems, leveraging their hardware design and coupling
novel algorithms, computational methods, and the optimizations
they enable. With this, we can simulate the interaction of rocket
engine plumes at unprecedented scales.

As a model, we represent the exhaust via the compressible
Navier–Stokes equations

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0, (1)

𝜕(𝜌u)
𝜕𝑡

+ ∇ · (𝜌u ⊗ u + 𝑝I - 𝝉) = 0, (2)

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑝)u - u · 𝝉 ] = 0, (3)

with the ideal gas law equation of state

𝑝 = (𝛾 - 1)𝜌𝑒, for 𝑒 B 𝐸/𝜌 - ∥u∥2/2 (4)

and, for 𝜇, 𝜁 denoting shear, bulk viscosity, constitutive law

𝜏𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
+ (𝜁 - 2𝜇/3) 𝛿𝑖 𝑗 𝜕𝑢𝑖

𝜕𝑥 𝑗
. (5)

Equations (1) to (3) describe the conservation of mass, momentum,
and energy, and 𝝉 is the viscous stress tensor and 𝑝 the pressure.
Tracking the mixture ratios of different gases and fluids, as well as
their chemical reactions, is a natural extension of the demonstration.
For this work and its implications, we focus on eqs. (1) to (5).

Summary of Contributions
• Information geometric regularization foregoes nonlinear viscous
shock capturing, enabling linear off-the-shelf numerical schemes
and sequential summation of right-hand side contributions.
• Unified addressing on tightly coupled CPU–GPU and APU plat-
forms increases total problem size with negligible performance
hit.
• FP32 compute and FP16 storage further reduce memory use while
remaining numerically stable, enabled by the algorithm’s well-
conditioned numerics.
• Reduce memory footprint 25-fold over state-of-the-art.
• Improve time and energy-to-solution factors of 4 and 5.4, com-
pared to an optimized implementation of state-of-the-art meth-
ods.
• First CFD simulation exceeding 200T grid points and 1 quadrillion
degrees of freedom, improving on previous largest simulations
by a factor of 20.

Example simulation result
Figure 1 shows a visualization for a simulation run on CSCS Alps.
The visualization shows the interactions between an array of 33
Mach 10 rocket engines organized in an array inspired by that of
the SpaceX Super Heavy, each resolved by 600 grid cells across
its outlet. The high resolution allows fine-scale details to be repre-
sented despite the high Mach number. The simulation of fig. 1 uses

15

https://github.com/MFlowCode/MFC


Simulating many-engine spacecraft: Exceeding 1 quadrillion degrees of freedom via information geometric regularization SC ’25, November 16–21, 2025, St Louis, MO, USA

Figure 1: Simulation results showing the interacting plumes
from an array of 33 thrusters in a configuration inspired by
the SpaceX Super Heavywith 16.5 trillion degrees of freedom.
(The thrusters themselves are for visualization purposes. We
model them through inflow boundary conditions.)

a rectilinear grid of 3.3T cells and ran for 16 hours on 9.2K GH200s
(2300 Alps nodes).

4 Current State of the Art
4.1 Shock capturing
Shock waves. Shock waves are the primary concern in high-speed
compressible fluid dynamics simulations. They arise in numerous
natural and man-made phenomena, including supernovae, air, and
spacecraft. The velocity and density fields of compressible high-
speed flows sharpen over time, eventually forming macroscopic
discontinuities or shock waves. However, on the microscopic scale,
the gas viscosity balances the steepening of shock waves, resulting
in smooth profiles. In practice, this happens on the scale of the
mean free path of gas particles, orders of magnitude smaller than
the quantities of interest.

Computation with shocks: A multiscale problem. Higher-order nu-
merical methods exploit the target solution’s regularity to approxi-
mate it with smooth functions, most frequently polynomials. The
mean-free path is many orders of magnitude shorter than a realistic
computational grid spacing. Thus, shocks appear as discontinuities
on the grid scale, and the direct application of higher-order meth-
ods leads to Gibbs–Runge oscillations and subsequent simulation
failure. Shock capturingmodifies either the equation or its discretiza-
tion to obtain a well-behaved object on the grid scale. It amounts to
coarse-graining the microscopic shock and correctly representing
its macroscopic effects without resolution at the grid level. The

resulting coarse-scale model should preserve smooth grid-scale
oscillations due to turbulence, reactions, or acoustic effects.

Existing approaches. Artificial viscosity mitigates Gibbs–Runge os-
cillations at the cost of excessive dissipation of fine-scale features.
To remedy the latter, numerous approaches apply artificial diffusiv-
ity adaptively, in the vicinity of the shock [9, 13, 17].

Realizing a viscous regularization is challenging in practice. A
lack of viscosity creates spurious oscillations, while excessive viscos-
ity dissipates the solution. Common choices, such as the localized
artificial diffusivity (LAD) of [9], attempt to strike this balance.
Viscous methods spread the shock over multiple grid points, but
the resulting shock profile is not high-order smooth (fig. 2 (a,i)).
This can still lead to Gibbs–Runge oscillations overcoming the reg-
ularization and destabilizing solutions. Increasing the shock width
requires increasing the strength of the artificial viscosity, which
smears true physical features critical to representing the flow (fig. 2,
(b,i)). In the presence of sufficiently strong shocks, the required arti-
ficial viscosity affects the CFL numbers of the explicit time steppers
considered state-of-the-art for such hyperbolic problems.

Limiters are an alternative to artificial viscosity. They adaptively
lower the order of the numerical method at shocks [16, 26]. They are
more robust but also risk dissipating fine-scale features. Riemann
solvers aim to mitigate this problem but add computational cost [14,
22, 25].

4.2 GPU memory
The evolution of GPU memory over the past decades, in terms of
capacity and bandwidth, has been highly beneficial for CFD appli-
cations, which exhibit low arithmetic intensity. Thus, performance
is limited by memory bandwidth. The spatio-temporal scale sepa-
ration in fluid flows requires a high resolution, necessitating large
amounts of memory to be accessed at high speeds. Both NVIDIA
and AMD have blurred the lines between GPU and CPU memory
by introducing coherent CPU-to-GPU interfaces: 900GB/s bidirec-
tional bandwidth for the NVIDIA Grace Hopper and InfinityFabric
at 8 × 72GB/s for the AMD Trento+4 MI250X configuration of
Frontier. These fast interconnects, along with technologies such
as unified virtual memory (UVM), allow CPU memory for GPU
computations and even (in the case of Grace Hopper) allow the
GPU to saturate the host memory bandwidth. Furthermore, AMD
introduced the MI300A in LLNL’s El Capitan and Tuolumne, with a
single physical HBM pool accessed by both CPU and GPU devices.
This strategy eliminates concerns about device and host pointers
or memory storage locations.

4.3 Floating point computation
The advent of artificial intelligence has fueled the development
of algorithms with reduced and mixed precision, although their
adoption in HPC applications remains limited. Most traditional sci-
entific applications rely on FP64 computation and storage. However,
recent advances in software and numerical methods demonstrate
the viability of sub-FP64 precision for well-conditioned numerical
methods and a range of traditional fluid flow problems [15]. Still,
FP64 is the de facto standard for compressible, shock-laden flow
simulation and traditional shock-capturing techniques. WENO-
based reconstruction methods and approximate Riemann solves,

16



SC ’25, November 16–21, 2025, St Louis, MO, USA Wilfong et al.

considered state-of-the-art and used as the baseline in this work,
involve poorly conditioned operations and thus are not well suited
to reduced precision [1]. We elide such issues herein by avoiding
numerical shock capturing entirely via IGR.

4.4 Large CFD simulations
Previous Gordon Bell winner [23] performed a 10T grid point CFD
simulation on IBMBlueGene/Q. The system’s substantial CPUmem-
ory enabled this simulation. However, the wall time required to
process such a large simulation makes achievable physical time
scales short. More recently, [24] solved a compressible CFD problem
of 10T grid points when extrapolating to 100% of Frontier.

The current largest accelerator-based flow simulations are for
incompressible flows, which have fewer degrees of freedom. The
largest simulation represented turbulence on a 30T point grid us-
ing OLCF Frontier [29]. Large time step costs arise from all-to-all
communications, which dominate the time-to-solution.

5 Innovations Realized
5.1 The need for scale
Current CFD simulations struggle to resolve phenomena across
strongly separated space and time scales. The fluid dynamics of
engineering interest involve these multiscale interactions; in the
most elementary case, large coherent flow structures and small
turbulent eddies.

For external aerodynamics, such as the jets we focus on in this
study, high-fidelity predictions require faithful representation of
the interaction between large-scale wake structures and small vor-
tices. Current methods force compromises. Fine grids are required
to represent shock waves, acoustic phenomena, and their turbulent
interactions. Current state-of-the-art methods suffer from numeri-
cal dissipation, dissipating important flow features. By combining
high resolution with low wall time cost and an inviscid regular-
ization (IGR), we reduce cell sizes relative to flow feature scales,
overcoming these challenges.

5.2 Shock treatment with information
geometric regularization

We avoid the limitations of standard shock-capturing approaches
via the first inviscid regularization of the equations, called infor-
mation geometric regularization (IGR) as recently proposed by Cao
and Schäfer [5]. IGR was first derived in the pressureless (infinite
Mach number) case, where shocks amount to the loss of injectivity
of the flow map 𝑥 ↦→ 𝜙𝑡(𝑥) that maps gas particles from their
initial position to their position at time 𝑡 . IGR modifies the geom-
etry according to which the flow map evolves, such that particle
trajectories 𝑡 ↦→ 𝜙𝑡(𝑥0) do not cross and instead asymptotically
approach each other (see fig. 3). This preserves the long-time post-
shock behavior, prevents the formation of grid-level singularities,
and recovers the nominal vanishing viscosity solutions in the limit.
This result has been proven rigorously in the unidimensional, pres-
sureless case [6].

Applying IGR to the compressible Euler equations amounts to
adding a so-called entropic pressure Σ to 𝑝 , resulting in the modified

𝑝
(𝑥

)

Exact LAD (current SoA) IGR (this work)

𝑥

𝑝
(𝑥

)

𝑥
(a) Shock problem (b) Oscillatory problem

(i)
LA

D
v.
Ex

ac
t

(ii
)I
GR

v.
Ex

ac
t

Figure 2: Inviscid regularization: Localized artificial diffu-
sion (LAD) spreads shocks over a user-defined width (a,i).
The resulting curve is not high-order smooth. This can cause
methods with a high order of accuracy to develop oscilla-
tions and, ultimately, fail. Increasing the width for coarser
discretizations yields unphysical and significant dissipation
of oscillatory solution profiles (b,i). Information geometric
regularization replaces shocks with smooth profiles (a,ii) at
the grid scale and preserves oscillatory features (b,ii).

conservation law:
𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0, (6)

𝜕(𝜌u)
𝜕𝑡

+ ∇ · (𝜌u ⊗ u + (𝑝 + Σ)I - 𝝉) = 0, (7)

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑝 + Σ)u - u · 𝝉 ] = 0, (8)

𝛼
[
tr (∇u)2 + tr2 (∇u)] = Σ

𝜌
- 𝛼∇·

(∇Σ
𝜌

)
. (9)

Shown in fig. 2, this inviscid regularization yields smooth solutions
without diffusion of fine-scale features. The parameter 𝛼 ∝ Δ𝑥2,
where Δ𝑥 is the nominal mesh spacing, determines the width of the
smoothly expanded shocks. Computing the flux requires solving the
auxiliary equation eq. (9), but

√
𝛼 is proportional to the mesh size.

So, the resulting discrete system is a uniformly well-conditioned
grid-point-local problem. Using the previous solution as a warm
start, ⪅ 5 Jacobi or Gauss–Seidel sweeps per flux computation
suffice at negligible computational cost.

Discretization. IGR allows one to bypass shock capturing, instead
using a third- or fifth-order accurate finite volume method directly.
Lax–Friedrichs numerical fluxes treat the hyperbolic part of the
equation. Due to the high Reynolds number of the problem under
consideration, we find that a second-order accurate approximation
of the derivatives of u suffices to compute the viscous stress tensor.
We reuse these derivatives to compute the left side of eq. (9) and

17



Simulating many-engine spacecraft: Exceeding 1 quadrillion degrees of freedom via information geometric regularization SC ’25, November 16–21, 2025, St Louis, MO, USA

𝑥1 𝑥2
0

𝜙(𝑥)

𝑡

𝛼 = 0.0 (Exact) 10-5 10-4 10-3

𝜙𝑡(𝑥)

Figure 3: Information geometric regularization modifies
shocks by changing the geometry according to which the
flow map 𝜙𝑡 evolves in time. In the modified geometry, the
trajectories of two tracer particles 𝑡 ↦→ 𝜙𝑡(𝑥1),𝜙𝑡(𝑥2) con-
verge in 𝑡 rather than cross. The regularization strength 𝛼

determines the rate of convergence. The vanishing viscosity
solution is recovered in the 𝛼 → 0 limit. Figure adapted from
Cao and Schäfer [5] with author permission.

discretize the elliptic operator on the right using a standard 7-point
stencil.

For each computation of the hyperbolic flux, we solve eq. (9)
using up to 5 sweeps of Jacobi or Gauss–Siedel iteration, with
the previously computed Σ as an initial guess. We use a third-
order accurate Runge–Kutta time stepper [12]. For a single species
(advected fluid) case, the total number of floating point numbers
stored by our scheme is 17𝑁 + 𝑜(𝑁), where 𝑜(𝑁) is the number of
grid points. This includes 5 state variable arrays (density, energy,
and threemomenta), which are the degrees of freedom of the solution
per grid cell. We also hold 5 arrays for the Runge–Kutta sub-step, 5
arrays for the right-hand side of the discretized PDE system, one
array for Σ, and one for the right-hand side of eq. (9). An additional
copy of Σ is required if Jacobi sweeps are used for the iterative
solve.

5.3 The algorithm
The key algorithmic kernel of our method computes the right-
hand side of the ordinary differential equation obtained from the
spatial discretization. It is presented in algorithm 1. We advance
the conservative variables line (1) at the cell centers using a 3rd-
order accurate Runge–Kutta time stepper, requiring 2 copies of the
state variables. The flux calculations at the cell boundaries are split
dimensionally across the three coordinate directions line (12). The
conservative variables are reconstructed at the cell boundaries using
a 5th-order accurate polynomial interpolation scheme (lines 23 to
28).

The viscous fluxes require the calculation and reconstruction
of velocity gradients (lines 16 to 18). A conversion of the recon-
structed conservative variables to their primitive form is performed
at the cell boundaries (lines 25 and 29). The Riemann problem at
the interface is then solved using a Lax–Friedrichs approximate
Riemann solver (lines 26 and 34). The net flux at the cell center is

Algorithm 1: Compute right-hand side (RHS)
1 (𝜌, 𝜌u,𝐸,𝛼)← Conservative variables
2 (u,𝑝)← Primitive variables
3 Σ← Entropic pressure
4 rhs← Time stepper RHS
5 vflux← Temp. array for viscous flux
6 coeff← Reconstruction coefficients
7 igr_rhs← RHS for elliptic solve
8 igr_func()← Routine to compute igr_rhs
9 viscous()← Routine for viscous flux

10 flux()← Routine for inviscid flux
11 for 𝑡 = 1 to 𝑇 do // Loop over time steps

12 for dir← (x, y, z) do // Loop over domain

13 foreach (i, j, k) in cells do
14 for q← -2, 3 do // Reconstruction

15 for n← (x, y, z) do
16 compute dnu
17 vfluxL ← vfluxL + coeffL(q) dnu
18 vfluxR ← vfluxR + coeffR(q) dnu
19 if dir = x ∧ q = 0 then
20 store dnu

21 if dir = x ∧ q = 0 then
22 igr_rhs← igr_func

(
d𝑥u, d𝑦u, d𝑧u

)
// Recon. density, velocity

23 𝜌L, 𝜌R ← 𝜌(-2 :3) along dir

24 𝜌uL, 𝜌uR ← 𝜌u(-2 :3) along dir
// Convert to primitive

25 uL, uR ← 𝜌uL, 𝜌uR
// Viscous fluxes

26 rhs← viscous(vfluxL, vfluxR, uL, uR)
// Recon. remaining variables

27 𝐸L,𝐸R ← 𝐸(-2 :3) along dir

28 𝛼L,𝛼R ← 𝛼(-2 :3) along dir
// Convert to primitive

29 𝑝L,𝑝R ← 𝐸L,𝐸R
30 ΣL, ΣR ← 0

// IGR contribution in y,z

31 if dir = y ∨ dir = z then
32 ΣL, ΣR ← Σ(-2 :3) along dir

33 for 𝑑 ← L,R do // Inviscid fluxes

34 rhs← flux(𝜌d, ud,𝐸d,𝑝d,𝛼d,𝜎d)

35 if dir=x then
// IGR elliptic solve

36 Σ← igr_rhs
37 for d← L,R do // IGR x contrib.

38 𝜌uL, 𝜌uR ← 𝜌u(-2 :3) along dir

39 uL, uR ← 𝜌uL, 𝜌uR
40 ΣL, ΣR ← Σ(-2 :3) along dir

41 rhs← flux(ud,𝜎d)

42 (𝜌, 𝜌u,𝐸,𝛼)← (𝜌, 𝜌u,𝐸,𝛼) + d𝑡 · rhs

18



SC ’25, November 16–21, 2025, St Louis, MO, USA Wilfong et al.

CPU GPU
Chip-to-chip
interconnect

Tim
e

Alloc 𝑞2 Alloc 𝑞1

𝑞2 = 𝑞1
𝑞1 = 𝑔(𝑞1)

𝑞∗ = 𝑓 (𝑞1)
𝑞1 = 𝑔(𝑞1,𝑞2,𝑞∗)

𝑞∗ = 𝑓 (𝑞1)
𝑞1 = 𝑔(𝑞1,𝑞2,𝑞∗)

Figure 4: Schematic of the chip-to-chip (C2C) transfers of
intermediate time-step variables between the on-node CPU
and GPU devices. The time sub-steps are 𝑞1,2 and the full
step integration is stored in 𝑞1.

an input to the time stepper (line 4) via the right-hand side. The
entropic pressure Σ is calculated at the cell centers by solving the
elliptic PDE (line 36) in eq. (9) and incorporated into the right-hand
side (lines 34 and 41). The left side of eq. (9) also requires veloc-
ity gradients, which are reused from the viscous flux calculations
(lines 20 to 22).

5.4 Optimizations
Our implementation eliminates the storage of the reconstructed
states (lines 23 to 29), velocity gradients (lines 16 to 20), and fluxes
(lines 26, 34 and 41) and keeps all operations in a single kernel
(algorithm 1). The memory footprint is reduced by storing the
intermediate variables as thread-local temporary arrays within
this kernel. The algorithm only requires storing 2 copies of the
conservative variables, the net flux at each grid point, and the
solution and left side of the elliptic PDE in eq. (9).

Each thread solves an approximate Riemann problem at the grid
cell–cell interface and accumulates its contribution to the right-
hand side at overlapping cells via atomic operations to prevent
race conditions. During the reconstruction along the 1st coordi-
nate dimension (𝑥 , here), the contributions to the left-hand side
of equation eq. (9) are computed using the velocity gradients for
the viscous fluxes (line 22). The elliptic PDE in eq. (9) is solved
after its left side is computed (line 36). The entropic pressure added
directly to the flux in the 2nd and 3rd dimensions (lines 31 to 32).
The flux contribution of the entropic pressure in the first dimension
is completed separately after the elliptic solve (lines 36 to 41). The
above decreases memory use 25-fold compared to an optimized
5th-order accurate WENO and Riemann solver implementation in
the same codebase [28].

5.5 Unified Memory
The unified memory approach uses unified-shared-memory (USM)
mode on the MI300A (El Capitan), AMD InfinityFabric for CPU–
GPU connections on Frontier, and the NVLink C2C connection on
Grace Hopper (Alps), Figure 4 shows this strategy, using the full
capacity of the compute node while expanding beyond the GPU
memory without incurring a meaningful performance penalty. This
allows us to store the intermediate Runge-Kutta stage on the host,
reducing GPU memory use by up to a factor of 12/17.
5.5.1 AMDapproach for El Capitan. On theAMDMI300A, the CPU
and GPU share a single physical HBM pool. We compile MFC with
OpenMP offloading directives using AMD’s next-generation Flang
compiler and OpenMP’s USM mode. All variables have a single
copy in memory and are accessible from CPUs and accelerators
with no data movement. CCE’s OpenACC implementation is also
used for speed comparisons.

5.5.2 AMD approach for Frontier. Our approach to Frontier in-
volves using OpenACC or OpenMP, as well as HPE’s CCE or the
AMDFlang next-generation compiler, for performance comparisons
between compilers and unified memory implementations.

None of the vendor compilers available on Frontier support an
equivalent of USM for OpenACC, though both CCE and AMD’s
ROCm compiler support OpenMP’s USM mode. CCE allows users
to allocate device-accessible memory and request OpenACC to omit
a separate device copy, effectively eliding the need for USM via
UVM. The AMD heterogeneous system architecture (HSA) requires
that GPU memory be accessible by the host. To reduce HBM use
on Frontier, we allocate a single time-step stage as device-resident
memory (via hipMalloc) and the second as pinned host memory (via
hipMallocManaged and hipMemAdvise). With CCE and OpenACC, we
set CRAY_ACC_USE_UNIFIED_MEM=1. Hence, the CCE OpenACC run-
time detects that these arrays do not need to be mapped and instead
uses zero-copy across the AMD Trento–MI250X InfinityFabric.

With OpenMP, the mapping of the Fortran pointers associated
with the device-resident memory within the MFC data structures
is omitted. No redundant memory copy is created due to MP’s
treatment of the derived type mapping with Fortran pointer compo-
nents. MFC can also run on Frontier in USM mode, but was found
to be less performant on Frontier than a UVM strategy discussed
in section 5.5.3 below, and is not used in this work. In summary,
we reduce memory usage on both the host and device without
compromising performance.

With CCE, the buffers passed to MPI are mapped to device mem-
ory by the OpenACC runtime. We use GPU-aware MPI to commu-
nicate GPU buffers directly. This work also tests a development
build of AMD’s new Flang compiler that requires a beta version
of the ROCm 7 runtime. API changes in this runtime compared
to ROCm 6 require us to disable GPU-aware MPI for AMD Flang
builds.

5.5.3 NVIDIA approach for Alps. The Alps nodes have a hardware-
coherent system that couples a Grace CPU and a Hopper GPU using
a 900GB/s NVLink-C2C connection. This allows both processors
to access all system memory at high speeds coherently and consis-
tently. In addition to the usual CUDA allocators, GPU memory can
be allocated using system allocators such as malloc. The unified

19



Simulating many-engine spacecraft: Exceeding 1 quadrillion degrees of freedom via information geometric regularization SC ’25, November 16–21, 2025, St Louis, MO, USA

Table 2: Node and full system properties of the supercomputers tested in this work. TOP500 rankings from June 2025.

Node Configuration # Nodes Memory [Node, System] Peak Power Rmax TOP500
LLNL El Capitan 4 AMD MI300A APU 11136 [512GB, 5.6 PB] APU 34.8MW 1742 PFLOPs 1
OLCF Frontier 4 AMD MI250X GPU 9472 [512GB, 4.8 PB] GPU 24.6MW 1353 PFLOPs 2

1 AMD Trento CPU [512GB, 4.8 PB] CPU
CSCS Alps 4 NVIDIA GH200 2688 [384GB, 1.0 PB] GPU 7.1MW 435 PFLOPs 8

(4 Grace CPU, 4 Hopper GPU) [480GB, 1.3 PB] CPU

memory concept maps to the Grace Hopper superchip and is used
herein.

To realize out-of-core GPU computations, we compile and link
via -gpu=mem:unified, instructing the compiler to use CUDAUnified
Memory. This provides a single unified address space for the CPU
and GPU. Our optimizations leverage this infrastructure via a zero-
copy strategy, where the most frequently accessed data are hosted in
GPU memory and the least frequently accessed are in CPU memory.
We avoid data movement during the simulation and only perform
local or remote direct accesses. This eliminates the duplication of
host and device buffers, thereby maximizing the simulation size. To
fine-tune data placement, we provide memory hints to the CUDA
driver via cudaMemAdvise and cudaMemPrefetchAsync. For the buffers
that stay in CPU memory for the full lifetime of the simulation, we
use pinned allocations. This results in a minimally intrusive out-of-
core implementation that does not sacrifice GPU performance.

The time step updates in the Runge–Kutta scheme are rearranged
so that only the current sub-step is passed to the right-hand side
routine. The buffer holding the previous state is used to update
the current Runge–Kutta state. With this rearrangement, we only
store one sub-step and the right-hand side buffer in GPU memory.
Thus, the intermediary sub-step is always in CPU memory, freeing
GPU memory and increasing simulation size without sacrificing
performance. The time step updates access Runge–Kutta sub-steps
from their physical locations via zero-copy, allowing simultaneous
access to data from both GPU and CPU memory through the C2C
NVLink. We include flexibility in hosting the IGR temporary vari-
ables in either GPU or CPU memory, further reducing the memory
footprint from 12/17 to 10/17 and scaling to larger problems with
little performance impact.

We communicate via CUDA-awareMPI and GPUDirect, avoiding
the need for staging in host memory. We allocate the send and
receive buffers on the GPU using OpenACC capture to guide MPI
in selecting the GPU path. This strategy enables separate memory
for the send/receive halo buffers.

5.6 Mixed Precision
On all systems, we implement a FP16/32 mixed-precision strategy;
computations are performed in FP32 and stored in FP16. On Alps
we use NVHPC and on AMD systems the AMD Flang compiler,
both of which support FP16 natively.

This strategy is numerically viable for various compressible flow
simulations, as discussed in section 4.3. This strategy further dou-
bles the maximum simulation size compared to state-of-the-art

(a) FP16/FP32 (b) FP32

(c) FP64 (d) FP64 (Baseline)

Figure 5: Visualization of a three-engine configuration and its
plumes using (a) FP16, (b) FP32, (c) FP64 storage, and (d) the
baseline numerics. The contours indicate where the velocity
exceeds the free stream flow, and the initial state is seeded
with smooth, random noise in all cases. FP32 and FP64 yield
visually indistinguishable results. Visual differences in the
FP16 case are solely due to the earlier onset of physical flow
instabilities, yet they remain faithfully representative of
the flow features. The grid-dependent nature of the baseline
shock-capturing approach results in spurious grid-alignment
artifacts.

shock capturing methods we are comparing against, which are
numerically unstable even at single precision.

While most directive constructs are readily applicable to half-
precision, support for atomic updates in the NVHPC compiler was
just added to its SDK and is used here. Here, atomic updates are
more performant in their vectorized version, which we implement
in a batched manner. Using FP16/32, we enable GH200 simula-
tions exceeding 100T grid points by extrapolating our results from
CSCS Alps to JSC JUPITER, which has the same primary architec-
ture.

Figure 5 compares simulation results for engine plumes per-
formed with FP16, FP32, and FP64 storage with the FP64 baseline
numerics. Double and single precision results are visually indistin-
guishable. Half-precision storage yields visually different results.
They arise from the more rapid onset of the hydrodynamic in-
stabilities due to their seeding with numerical noise. At longer
simulation times, we expect all precision results to be equivalent.

20



SC ’25, November 16–21, 2025, St Louis, MO, USA Wilfong et al.

Grid-aligned artifacts appear in the baseline numerics result due to
the grid-dependent nature of the shock-capturing approach.

6 How Performance was Measured
6.1 HPC platforms
We performed calculations on LLNL El Capitan, OLCF Frontier,
and CSCS Alps. Table 2 shows the performance attributes of these
systems.

6.1.1 LLNL El Capitan. The El Capitan nodes have four AMD
MI300A APUs. Each APU combines 24 EPYC Zen 4 CPU cores and
228 CDNA 3 compute units with a single 128GB layer of HBM3
memory for both processor types. Nodes are interconnected via
HPE Cray Slingshot-11 Ethernet in a dragonfly topology with four
200GB/s NICs per node. The GPUs can be programmedwith unified
shared memory (USM) to avoid duplicate host–device memory
addresses. We use this strategy via OpenMP target offload (see
section 5.5).

6.1.2 OLCF Frontier. Each Frontier node has one 64-core AMD
EPYC Trento CPU and four AMD MI250X GPUs. Each MI250X
GPU contains two Graphics Compute Dies (GCDs) with 64GB
of HBM2E each (or 128GB per GPU). The total system memory is
9.6 PB, equally split between HBM2E GPU and DDR4 CPUmemory.
Frontier uses HPE Slingshot Ethernet for interconnects with a 3-
hop Dragonfly topology and four 200GB/s NICs per node, which
are attached to the GPUs.

6.1.3 CSCS Alps. Alps nodes have 4 NVIDIA Grace Hopper GH200
superchips. Each GH200 has a Hopper GPU with 4 TB/s of mem-
ory bandwidth for its 96GB of HBM3 memory and a Grace CPU
with 72 Arm-v9 cores with 500GB/s bandwidth for its 120GB of
LPDDR5 memory. NVLink-C2C connects the CPU and GPU, en-
abling efficient data movement. We use this new capability herein
(see section 5.5). Alps’s nodes interconnect through HPE Slingshot
with 200GB/s injection bandwidth per superchip.

6.2 Software environment and performance
baseline

We base our implementation on MFC [4, 28]1, a compressible flow
solver that implements state-of-the-art numerical shock captur-
ing, as well as the IGR implementation of this work. All of MFC’s
schemes scale ideally to 100% of LLNL El Capitan, OLCF Frontier,
and CSCS Alps, among other previous and existing flagship super-
computers [11, 20].

MFC offloads computation onto GPU and superchip/APU devices
via either OpenMP or OpenACC, and uses metaprogramming to
abstract away and automate vendor-specific or otherwise burden-
some optimizations. MFC has a history of being used to simulate
compressible multi-species, phase, and chemically reacting fluid
flows [2, 3, 7, 8]. Performance results are measured using a repre-
sentative three-dimensional simulation of the exhaust plume of a
single Mach 10 jet.

We use MFC’s optimized implementation of WENO nonlinear re-
constructions and HLLC approximate Riemann solves as a baseline
for performance comparisons [28]. This implementation matches
1Openly available at https://github.com/MFlowCode/MFC

Table 3: Wall time for representative simulations, quan-
tified via nanoseconds per grid cell per time step. The
baseline method is compared to the current work. For the
AMDMI300A, USMmode is used, so no in-core quantities are
presented; other unified cases use UVM. AMD device cases
were run using Cray CCE 19.0.0 and AMD Flang Preview 7.0.5
compilers, using OpenACC and OpenMP offloading, with the
best results presented. AMD Flang is the only current com-
piler option for native FP16/32 on all AMDGPU/APU devices.
NVHPC is used for the GH200 cases.

Device Baseline
(in-core)

IGR
(in-core)

IGR
(unified)

GH200 16.89 3.83 4.18 FP64MI250X GCD 69.72 13.01 19.81
MI300A 29.50 †— 7.21
GH200 ∗N/A 2.70 2.81 FP32MI250X GCD ∗N/A 9.12 13.03
MI300A ∗N/A †— 4.19
GH200 ∗N/A 3.06 3.07

FP16/32

MI250X GCD ∗N/A 22.63 24.71
MI300A ∗N/A †— 17.39
∗Numerically unstable; †MI300A is always unified

or outperforms other codebases with the same and similar re-
construction schemes. On Frontier and El Capitan we test HPE’s
CCE 19.0.0 compiler and a pre-release of AMD’s Next Generation
Flang compiler with HPE Cray MPICH-8.1.31 for messaging. For
both compilers, we specify -O3 for optimization. With CCE, we also
apply the -haggress flag to improve performance in large kernels.
On Alps, we use a pre-release of the NVIDIA HPC SDK 25.9 and
HPE Cray MPICH 8.1.30 for messaging. We also use the compile-
time flag -gpu=fastmath, which yields a performance improvement
for single-precision computation on NVIDIA devices. The latest
NVIDIA HPC SDK exhibits an FP64 performance regression; we
use NVHPC SDK 24.3 instead.

6.3 Measurement tools
We measure execution time using application internal timers, in-
cluding the standard cpu_time and system_clock procedures. On
Frontier and El Capitan, we periodically sample the instantaneous
GPU or APU power draw by reading the virtual file system for
the AMD driver. The power reading is the same as reported by
rocm-smi, but reading from the virtual filesystem has lower over-
head. On Frontier, rocm-smi collects GPU and HBM power only.
On El Capitan rocm-smi includes CPU, GPU, and memory power.
On Alps, nvidia-smi records the module (CPU, GPU, and memory)
power draw.

On all platforms, we post-process the results to account only
for power draw during time-stepping, which is then averaged and
multiplied by the average time per time step. The number of grid
points further normalizes energy use.

21

https://github.com/MFlowCode/MFC


Simulating many-engine spacecraft: Exceeding 1 quadrillion degrees of freedom via information geometric regularization SC ’25, November 16–21, 2025, St Louis, MO, USA

0

0.5

1

1.5

(a) El Capitan (MI300A)

Ideal Measured Full System

0

0.5

1

1.5

(b) Frontier (Trento+MI250X)

N
or
m
al
iz
ed

W
al
lT

im
e

102 103 104 105
0

0.5

1

1.5

(c) Alps (GH200)

Number of Devices

Figure 6: Weak scaling performance for a representative
thruster problem on LLNL El Capitan (number of MI300As),
OLCF Frontier (number of MI250Xs), and CSCS Alps (num-
ber of GH200s). The full system is indicated for each case.
All runs use unified memory, FP16/32 mixed precision, and
a 16 node configuration for scaling comparison, which en-
sures that all MPI communication directions are touched.
On El Capitan, we see 97% efficiency out to 10750 MI300As.
On Alps, ideal (≈ 100%) scaling is observed at 9.2K GH200s.
On Frontier, we also achieve ideal (≈ 100%) efficiency at
37.6K MI250X GPUs, with a maximum problem size of 200T
grid points.

7 Performance Results
7.1 Time step cost
Table 3 shows the normalized grind times for a problem solved
using WENO reconstructions and HLLC approximate Riemann
solves with in-core computation (current state of the art, optimized
implementation in MFC [28]), IGR with in-core computation, and
IGR with unified memory on one GH200 on Alps, one MI250X
GCD on Frontier, and one MI300A APU on El Capitan. The grind
time is defined as nanoseconds per grid cell per time step, used to
normalize against the different problem sizes that fit within device
memory. Smaller grind times indicate shorter time to solution.

GH200 metrics are collected using separate memory mode for in-
core cases and unified memory mode for out-of-core/unified cases.
Performance impacts of less than 5% are observed when moving
from in-core to unified computation on the GH200 architecture. We
used the NVHPC 24.3 compiler for the GH200 FP64 cases due to
performance regressions in FP64 performance in newer versions.
However, an unrelated regression in NVHPC 24.3 was observed
when switching from separate memory to unified memory in-core
computation, resulting in a 9% performance hit in that case (see
table 3). The performance difference between in- and out-of-core
unified memory builds is less than 5%.

20
22
24
26
28
210 (a) El Capitan (MI300A)

Sp
ee
du

p

Ideal Full System USM UVM

20
22
24
26
28
210 (b) Frontier (Trento+MI250X)

Sp
ee
du

p

23 24 25 26 27 28 29 210 211 212 213 214
20
22
24
26
28
210 (c) Alps (GH200)

Number of Nodes

Sp
ee
du

p

Figure 7: Strong scaling on all systems for the same problem
configuration as fig. 6. All results are for FP16/32mixed preci-
sion, though FP32 and FP64 show similar results (FP32 shown
in fig. 8). The full system is shown for each case. Following
fig. 6, we base all speedups on an 8 node configuration, such
that all communication directions are touched.

When transitioning from in-core computation to unified mem-
ory computation on Frontier, performance degradation of 42% and
51% is observed for FP32 and FP64, owing to the slower xGMI
links between the Trento CPU and MI250X GCDs (72GB/s each)
compared to the C2C bandwidth between the Grace CPU and Hop-
per GPU (900GB/s). On El Capitan, there is no difference between
unified/in-core as the device shares a unified HBM pool.

The increased grind time in calculations that use unified memory
to increase problem size per device on Frontier and Alps results
from the exchange of conservative variable buffers between the
CPU and GPU at each Runge–Kutta update. On all devices, the
time to solution is reduced by a factor of approximately 4 when
comparing WENO to IGR in FP64. FP64 is broadly recommended
for ENO-type shock-capturing due to catastrophic cancellation [1].
Our approach can even handle even mixed FP16/FP32 precision.
This reduces the time to solution by a factor of at least 6 compared
to the baseline.

For FP16/32, we observe a performance regression on all devices
compared to FP32, but we expect to exceed or match FP32 perfor-
mance upon further code and compiler releases and optimizations.
We use the AMD Flang beta compiler and a pre-release version of
the NVHPC SDK 25.9. Further compiler improvements are staged
for non-beta AMD Flang releases, and the performance hit can be
expected to be similar to the NVHPC strategy.

7.2 Scaling
Figure 6 shows the weak scaling performance on LLNL El Capitan,
OLCF Frontier, and CSCS Alps. Unified memory and FP16/32 mixed
precision are used on all systems. A weak scaling efficiency of 97%

22



SC ’25, November 16–21, 2025, St Louis, MO, USA Wilfong et al.

23 24 25 26 27 28 29 210 211 212 213 214
20
22
24
26
28
210

Number of Nodes

Sp
ee
du

p

Ideal Full System This work Baseline

Figure 8: Strong scaling following fig. 7, here for FP32 on
Frontier. We compare the performance of the current work
to the optimized baseline method as labeled. The current
work uses and can accommodate 10.5B grid points per node,
while the baseline accommodates 421M grid points, both of
which are used for the 8-node speedup reference.

is observed when scaling from 64 to 43K MI300As on El Capitan.
On Frontier, we achieve perfect (100%, up to measurement variance)
weak scaling when scaling from 64 to 37.6K MI250X GPUs (128 to
75.2K GCDs). Likewise, on CSCS Alps, we achieve perfect weak
scaling when scaling from 64 to 9.2K GH200s. Better than 95%
efficiencies are also seen for FP32 and FP64 precision (not shown).

We exceed 200T grid cells, or 1 quadrillion degrees of freedom
(5 state variables) on Frontier using 37.6KMI250XGPUs (9408 nodes),
accommodating 13863 grid points per GCD with UVM, and FP16/32
mixed precision. On Alps, a problem size of 16113 is used per GH200
and UVM with FP16/32 mixed precision, amounting to 45T grid
point simulation on the full system (2688 nodes). On the recently de-
ployed JSC JUPITER, this amounts to 100.3T grid points or 501T de-
grees of freedom, given its size and matching architecture to Alps.
On El Capitan, we use 13803 grid points per MI300A GPU and reach
113T grid points using 10750 nodes (11.1K nodes full system). The
lower grid count on Alps and El Capitan is due purely to system
size.

Strong scaling results on Alps, Frontier, and El Capitan are shown
in fig. 7. The base case uses 8 nodes (32 GPUs), resulting in 32
ranks on El Capitan and Alps and 64 ranks on Frontier, arranged
in a rectilinear configuration. We use FP16/32 mixed precision
for storage/computation; unified memory is enabled via UVM on
Frontier and Alps and USM on El Capitan; GPU-aware MPI is used
on Alps. For a 32-fold increase in device count, we achieve strong
scaling efficiencies of 90%, 90%, and 86% on El Capitan, Frontier, and
Alps. When scaling to the full systems, we achieve 44% (El Capitan),
44% (Frontier), and 80% (Alps) strong scaling efficiencies. Thus, one
can execute an 8 node computation on the full system, decreasing
time to solution by a factor of about 500.

Figure 8 shows optimized baseline numerics in FP32 for the same
problem, which do not strong-scale well compared to the current
work. We observe 6% strong scaling efficiency for the baseline and
38% for the current work when scaling from 8 nodes to the full
Frontier system.

7.3 Energy efficiency
Table 4 shows the measured energy consumption per grid cell per
time step, comparing our IGR implementation with a prior state-
of-the-art WENO implementation. The problem size is adjusted

Table 4: Energy in µJ per grid cell per time step for the base-
line implementation compared to the current work.

Energy (µJ) El Capitan
(MI300A)

Frontier
(MI250X)

Alps
(GH200)

Baseline 15.24 10.67 9.349
IGR 3.493 1.982 2.466

to exhaust the total GPU/APU memory on a single node in dou-
ble precision. On the NIVIDA GH200 we measured the in-core
implementation. On the AMD MI250X and MI300A, we use the
CCE 19.0.0 compiler with GPU-only (in-core) and unified memory
builds.

The IGR method significantly reduces energy consumed com-
pared to the current state of the art on all platforms. The most
significant reduction comes from the improved time to solution,
and to lowest order, the Frontier and El Capitan energy improve-
ments match the grind time speedups in table 3. Due to the higher
power draw of the WENO scheme on Alps, we observe energy
savings beyond those resulting from grind time speedup.

The largest improvement is realized on Frontier with a 5.38-
times improvement in energy consumed by the GPU. As described
in section 6.3, the Frontier measurements include only GPU and
GPU HBM energy and do not represent changes that may have
impacted energy consumption of the CPU or CPU memory.

8 Implications
This work presents a highly scalable technique for predictive simu-
lation of compressible fluid flows. We demonstrated the method’s
capability by simulating high-Mach many-rocket engine thrusters
and their plume–plume interaction. This demonstrates that fully
resolved simulations of these systems are within reach of current
supercomputers, exceeding the scales demanded of state-of-the-art
current and prototype spacecraft. This advance paves the way for
the computation-driven design of critical components for space
exploration.

The combination of IGR, the resulting simplified algorithm, and
its optimized implementation improves the efficiency of simulating
compressible flow, as measured by key metrics: time to solution,
memory footprint, and energy to solution. We leverage the closely
coupled architectures of modern supercomputing platforms, in-
cluding the MI250X, MI300A, and GH200, which serve as proof of
concept for the efficient use of unified memory addressing.

Furthermore, our simplified algorithm is amenable to mixed-
precision computation. The resulting computational savings enable
the first CFD simulations with more than 200 trillion grid points
and 1 quadrillion degrees of freedom, exceeding the previous largest
such simulations by a factor of 20. At the same time, compared to
the baseline, the improved grind times and near-ideal strong scaling
of our approach enable flagship supercomputers to achieve orders
of magnitude reductions of time to solution on smaller problems.
This unlocks new opportunities for integrating simulation into
design optimization. Beyond flagship supercomputing, the dras-
tic increase in grid points per device extends the capabilities of
resource-constrained users.

23



Simulating many-engine spacecraft: Exceeding 1 quadrillion degrees of freedom via information geometric regularization SC ’25, November 16–21, 2025, St Louis, MO, USA

This work focuses on a set of thruster plumes. However, the
methodology shown is suited to general multiphase and multicom-
ponent flows, spanning fields ranging from biomedical treatments
tomarine and aviation applications. Our work thus has the potential
to aid the understanding of a broad range of physical phenomena.
IGR is agnostic to the numerical discretization, as it regularizes the
momentum balance equation of the associated PDE. Thus, one could
apply the same strategy to other techniques, such as discontinuous
Galerkin or finite difference methods.

This work demonstrates how users can avoid expensive and com-
plex viscous, nonlinear numerics via IGR. This achieves markedly
better scalability, speed, problem sizes, and time- and energy-to-
solution than current state-of-the-art methods. The spatial dis-
cretizations used in this work adhere to traditional algorithmic
design patterns commonly used in computational fluid dynamics.
Removing the need for numerical shock capturing enables a vast
and largely unexplored design space for numerical methods for
fluid dynamics problems.

Acknowledgments
SHB acknowledges the use of resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725 and allocation CFD154
(PI Bryngelson). This work was also supported by a grant from the
Swiss National Supercomputing Centre (CSCS) for Alps.

FS acknowledges support from the Air Force Office of Scien-
tific Research under award number FA9550-23-1-0668 (Information
Geometric Regularization for Simulation and Optimization of Su-
personic Flow).

The authors gratefully acknowledge contributions from Scott Fu-
tral (LLNL), RobNoska (HPE),Michael Sandoval (OLCF), andMat Col-
grove (NVIDIA).

References
[1] Federico Brogi, Stefano Bnà, Giuseppe Boga, Giacomo Amati, Tomaso Esposti On-

garo, and Matteo Cerminara. 2024. On floating point precision in computational
fluid dynamics using OpenFOAM. Future Generation Computer Systems 152 (2024),
1–16.

[2] S. H. Bryngelson and T. Colonius. 2020. Simulation of humpback whale bubble-
net feeding models. Journal of the Acoustical Society of America 147, 2 (2020),
1126–1135.

[3] S. H. Bryngelson, R. O. Fox, and T. Colonius. 2023. Conditional moment methods
for polydisperse cavitating flows. J. Comput. Phys. 477 (2023), 111917.

[4] S. H. Bryngelson, K. Schmidmayer, V. Coralic, J. C. Meng, K. Maeda, and T.
Colonius. 2021. MFC: An open-source high-order multi-component, multi-phase,
and multi-scale compressible flow solver. Computer Physics Communications 266
(2021), 107396.

[5] Ruijia Cao and Florian Schäfer. 2023. Information geometric regularization of
the barotropic Euler equation. arXiv preprint arXiv:2308.14127 (2023).

[6] Ruijia Cao and Florian Schäfer. 2024. Information geometric regularization of
unidimensional pressureless Euler equations yields global strong solutions. arXiv
preprint arXiv:2411.15121 (2024).

[7] A. Charalampopoulos, S. H. Bryngelson, T. Colonius, and T. P. Sapsis. 2022.
Hybrid quadrature moment method for accurate and stable representation of
non-Gaussian processes and their dynamics. Philosophical Transactions of the
Royal Society A 380, 2229 (2022).

[8] Esteban Cisneros-Garibay, H. Le Berre, Spencer H. Bryngelson, and Jonathan B.
Freund. 2025. Pyrometheus: Symbolic abstractions for XPU and automatically
differentiated computation of combustion kinetics and thermodynamics. arXiv
preprint arXiv:2503.24286 (2025).

[9] Andrew W Cook and William H Cabot. 2004. A high-wavenumber viscosity for
high-resolution numerical methods. J. Comput. Phys. 195, 2 (2004), 594–601.

[10] Gil Denis, Didier Alary, Xavier Pasco, Nathalie Pisot, Delphine Texier, and San-
drine Toulza. 2020. From new space to big space: How commercial space dream
is becoming a reality. Acta Astronautica 166 (2020), 431–443.

[11] W. Elwasif, S. Bastrakov, S. H. Bryngelson, M. Bussmann, S. Chandrasekaran, F.
Ciorba, M. A. Clark, A. Debus, W. Godoy, N. Hagerty, J. Hammond, D. Hardy, J. A.
Harris, O. Hernandez, B. Joo, S. Keller, P. Kent, H. Le Berre, D. Lebrun-Grandie, E.
MacCarthy, V. G. Melesse Vergara, B. Messer, R. Miller, S. Oral, J.-G. Piccinali, A.
Radhakrishnan, O. Simsek, F. Spiga, K. Steiniger, J. Stephan, J. E. Stone, C. Trott,
R. Widera, and J. Young. 2023. Early application experiences on a modern GPU-
accelerated Arm-based HPC platform. In HPC Asia ’23 (International Workshop
on Arm-based HPC: Practice and Experience (IWAHPCE)). Singapore, 35–49.

[12] Sigal Gottlieb and Chi-Wang Shu. 1998. Total variation diminishing Runge–Kutta
schemes. Math. Comp. 67, 221 (1998), 73–85.

[13] Jean-Luc Guermond, Richard Pasquetti, and Bojan Popov. 2011. Entropy viscosity
method for nonlinear conservation laws. J. Comput. Phys. 230, 11 (2011), 4248–
4267.

[14] Amiram Harten, Peter D Lax, and Bram van Leer. 1983. On upstream differencing
and Godunov-type schemes for hyperbolic conservation laws. SIAM review 25, 1
(1983), 35–61.

[15] M. Karp, R. Stanly, H. Song, T. Mukha, L. Galimberti, S. Toosi, L. Dalcin, S.
Rezaeiravesh, M. Münsch, N. Jansson, S. Markidis, M. Parsani, S. T. Bose, S. K.
Lele, and P. Schlatter. 2024. Sensitivity of numerical simulations of turbulence to
lower floating-point precision. In Proceedings of the Summer Program, Center for
Turbulence Research. 405–414.

[16] Xu-Dong Liu, Stanley Osher, and Tony Chan. 1994. Weighted essentially non-
oscillatory schemes. J. Comput. Phys. 115, 1 (1994), 200–212.

[17] Ali Mani, Johan Larsson, and Parviz Moin. 2009. Suitability of artificial bulk
viscosity for large-eddy simulation of turbulent flows with shocks. J. Comput.
Phys. 228, 19 (2009), 7368–7374.

[18] Manish Mehta, Francisco Canabal, Scott B Tashakkor, and Sheldon D Smith.
2013. Numerical base heating sensitivity study for a four-rocket engine core
configuration. Journal of Spacecraft and Rockets 50, 3 (2013), 509–526.

[19] Saadia M. Pekkanen. 2019. Governing the New Space Race. American Journal of
International Law Unbound 113 (2019), 92–97.

[20] A. Radhakrishnan, H. Le Berre, B. Wilfong, J.-S. Spratt, M. Rodriguez Jr., T. Colo-
nius, and S. H. Bryngelson. 2024. Method for portable, scalable, and performant
GPU-accelerated simulation of multiphase compressible flow. Computer Physics
Communications 302 (2024), 109238.

[21] Fantao Ren. 2024. Numerical-Study of Large-Liquid Rocket Plume-Flow-Field. In
Journal of Physics: Conference Series, Vol. 2755. IOP Publishing, 012038.

[22] Philip L Roe. 1981. Approximate Riemann solvers, parameter vectors, and differ-
ence schemes. J. Comput. Phys. 43, 2 (1981), 357–372.

[23] Diego Rossinelli, Babak Hejazialhosseini, Panagiotis Hadjidoukas, Costas Bekas,
Alessandro Curioni, Adam Bertsch, Scott Futral, Steffen J Schmidt, Nikolaus A
Adams, and Petros Koumoutsakos. 2013. 11 PFLOP/s simulations of cloud cavita-
tion collapse. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. 1–13.

[24] Srikanth Sathyanarayana, Matteo Bernardini, Davide Modesti, Sergio Pirozzoli,
and Francesco Salvadore. 2025. High-speed turbulent flows towards the exascale:
STREAmS-2 porting and performance. J. Parallel and Distrib. Comput. 196 (2025),
104993.

[25] Eleuterio F Toro. 2019. The HLLC Riemann solver. Shock Waves 29, 8 (2019),
1065–1082.

[26] Bram Van Leer. 1979. Towards the ultimate conservative difference scheme.
V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 1 (1979),
101–136.

[27] Xu Wang, Xu Xu, Jiaqi Yu, and Qingchun Yang. 2024. Effect of Free-Stream Mach
Number on the Base Thermal Environment of Launch Vehicle. Journal of Thermal
Science 33, 6 (2024), 2426–2436.

[28] Benjamin Wilfong, Henry Le Berre, Anand Radhakrishnan, Ansh Gupta, Diego
Vaca-Revelo, Dimitrios Adam, Haocheng Yu, Hyeoksu Lee, Jose Rodolfo Chreim,
Mirelys Carcana Barbosa, Yanjun Zhang, Esteban Cisneros-Garibay, Aswin
Gnanaskandan, Mauro Rodriguez Jr., Reuben D. Budiardja, Stephen Abbott, Tim
Colonius, and Spencer H. Bryngelson. 2025. MFC 5.0: An exascale many-physics
flow solver. arXiv preprint arXiv:2503.07953 (2025).

[29] PK Yeung, Kiran Ravikumar, Stephen Nichols, and Rohini Uma-Vaideswaran. 2025.
GPU-enabled extreme-scale turbulence simulations: Fourier pseudo-spectral al-
gorithms at the exascale using OpenMP offloading. Computer Physics Communi-
cations 306 (2025), 109364.

24


	Abstract
	1 Justification for ACM Gordon Bell Prize
	2 Performance Attributes
	3 Overview of the Problem
	4 Current State of the Art
	4.1 Shock capturing
	4.2 GPU memory
	4.3 Floating point computation
	4.4 Large CFD simulations

	5 Innovations Realized
	5.1 The need for scale
	5.2 Shock treatment with information geometric regularization
	5.3 The algorithm
	5.4 Optimizations
	5.5 Unified Memory
	5.6 Mixed Precision

	6 How Performance was Measured
	6.1 HPC platforms
	6.2 Software environment and performance baseline
	6.3 Measurement tools

	7 Performance Results
	7.1 Time step cost
	7.2 Scaling
	7.3 Energy efficiency

	8 Implications
	Acknowledgments
	References

