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ABSTRACT

Neural networks can be trained to solve partial differential equations (PDEs) by
using the PDE residual as the loss function. This strategy is called “physics-
informed neural networks” (PINNs), but it currently cannot produce high-accuracy
solutions, typically attaining about 0.1% relative error. We present an adversar-
ial approach that overcomes this limitation, which we call competitive PINNs
(CPINNs). CPINNs train a discriminator that is rewarded for predicting mistakes
the PINN makes. The discriminator and PINN participate in a zero-sum game
with the exact PDE solution as an optimal strategy. This approach avoids squaring
the large condition numbers of PDE discretizations, which is the likely reason for
failures of previous attempts to decrease PINN errors even on benign problems.
Numerical experiments on a Poisson problem show that CPINNs achieve errors
four orders of magnitude smaller than the best-performing PINN. We observe
relative errors on the order of single-precision accuracy, consistently decreasing
with each epoch. To the authors’ knowledge, this is the first time this level of
accuracy and convergence behavior has been achieved. Additional experiments
on the nonlinear Schrödinger, Burgers’, and Allen–Cahn equation show that the
benefits of CPINNs are not limited to linear problems.

1 INTRODUCTION

PDE-constrained deep learning. Partial differential equations (PDEs) model physical phenomena
like fluid dynamics, heat transfer, electromagnetism, and more. The rising interest in scientific
machine learning motivates the study of PDE-constrained neural network training (Lavin et al., 2021).
Such methods can exploit physical structure for learning or serve as PDE solvers in their own right.

Physics informed networks. Lagaris et al. (1998) represent PDE solutions as neural networks by
including the square of the PDE residual in the loss function, resulting in a neural network-based
PDE solver. Raissi et al. (2019) recently refined this approach further and called it “physics informed
neural networks (PINNs),” initiating a flurry of follow-up work. PINNs are far less efficient than
classical methods for solving most PDEs, but are promising tools for high-dimensional or parametric
PDEs (Xue et al., 2020) and data assimilation problems. The training of PINNs also serves as a
model problem for the general challenge of imposing physical constraints on neural networks, an
area of fervent and increasing interest (Wang et al., 2021b; Li et al., 2021; Donti et al., 2021).

Training pathologies in PINNs. PINNs can, in principle, be applied to all PDEs, but their numerous
failure modes are well-documented (Wang et al., 2021a; Liu et al., 2021; Krishnapriyan et al., 2021).
For example, they are often unable to achieve high-accuracy solutions. The first works on PINNs
reported relative L2 errors of about 10−3 (Raissi et al., 2019). The authors are unaware of PINNs
achieving errors below 10−5, even in carefully crafted, favorable settings. Higher accuracy is required
in many applications.

Existing remedies. A vast and growing body of work aims to improve the training of PINNs, often
using problem-specific insights. For example, curriculum learning can exploit causality in time-
dependent PDEs (Krishnapriyan et al., 2021; Wang et al., 2022a; Wight & Zhao, 2020). Krishnapriyan
et al. (2021) also design curricula by embedding the PDE in a parametric family of problems of
varying difficulty. Other works propose adaptive methods for selecting the PINN collocation points
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(Lu et al., 2021; Nabian et al., 2021; Daw et al., 2022). Adaptive algorithms for weighing components
of the PINN loss function have also been proposed (Wang et al., 2022b; van der Meer et al., 2022).
Despite these improvements, the squared residual penalty method used by such PINNs imposes a
fundamental limitation associated with conditioning, which is discussed next.

The key problem: Squared residuals. Virtually all PINN-variants use the squared PDE residual
as loss functions. For a linear PDE of order s, this is no different than solving an equation of
order 2s, akin to using normal equations in linear algebra. The condition number κ of the resulting
problem is thus the square of the condition number of the original one. Solving discretized PDEs
is an ill-conditioned problem, inhibiting the convergence of iterative solvers and explaining the low
accuracy of most previous PINNs. It is tempting to address this problem using penalties derived from
p-norms with p 6= 2. However, choosing p > 2 leads to worse condition numbers, whereas p < 2
sacrifices the smoothness of the objective. The convergence rates of gradient descent on (non-)smooth
convex problems suggest that this trade is unfavorable (Bubeck et al., 2015).

Weak formulations. Integration by parts allows the derivation of a weak form of a PDE, which for
some PDEs can be turned into a minimization formulation that does not square the condition number.
This procedure has been successfully applied by E & Yu (2017) to solve PDEs with neural networks
(Deep Ritz). However, the derivation of such minimization principles is problem-dependent, limiting
the generality of the formulation. Deep Ritz also employs penalty methods to enforce boundary
values, though these preclude the minimization problem’s solution from being the PDE’s exact
solution. Liao & Ming (2019) proposed a partial solution to this problem. The work most closely
related to ours is by Zang et al. (2020), who proposes a game formulation based on the weak form.

Competitive PINNs. We propose Competitive Physics Informed Neural Networks (CPINNs) to
address the above problems. CPINNs are trained using a minimax game between the PINN and a
discriminator network. The discriminator learns to predict mistakes of the PINN and is rewarded
for correct predictions, whereas the PINN is penalized. We train both players simultaneously on the
resulting zero-sum game to reach a Nash equilibrium that matches the exact solution of the PDE.

Summary of contributions. A novel variant of PINNs, called CPINNs, is introduced, replacing the
penalty employed by PINNs with a primal-dual approach. This simultaneously optimizes the PINN
and a discriminator network that learns to identify violations of the PDE and boundary constraints. We
optimize PINNs with competitive gradient (CGD) (Schäfer & Anandkumar, 2019) and compare their
performance to regular PINNs trained with Adam. On a two-dimensional Poisson problem, CPINNs
achieve a relative accuracy of almost 10−8, improving over PINNs by four orders of magnitude. To
the best of our knowledge, this is the first time a PINN-like network was trained to this level of
accuracy. We compare PINNs with CPINNs on a nonlinear Schrödinger equation, a viscous Burgers’
equation, and an Allen-Cahn equation. In all but the last case, CPINNs improve over PINNs trained
with a comparable computational budget.

2 COMPETITIVE PINN FORMULATION

We formulate CPINNs for a PDE of the general form

A[u] = f, in Ω (1)
u = g, on ∂Ω, (2)

where A[·] is a (possibly nonlinear) differential operator and Ω is a domain in Rd with boundary ∂Ω.
To simplify notation, we assume that f , g, and u are real-valued functions on Ω, ∂Ω, and Ω ∪ ∂Ω,
respectively. One can extend both PINNs and CPINNs to vector-valued such functions if needed.

2.1 PHYSICS INFORMED NEURAL NETWORKS (PINNS)

PINNs approximate the PDE solution u by a neural network P mapping d-variate inputs to real
numbers. The weights are chosen such as to satisfy equation 1 and equation 2 on the points x ⊂ Ω
and x ⊂ ∂Ω. The loss function used to train P has the form

LPINN(P,x,x) = LPINN
Ω (P,xΩ) + LPINN

∂Ω (P,x), (3)
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where LPINN
∂Ω measures the violation of the boundary conditions equation 2 and LPINN

Ω measures the
violation of the PDE of equation 1. They are defined as

LPINN
Ω (P,x) =

1

NΩ

NΩ∑
i=1

(A[P](xi))− f(xi))
2 (4)

LPINN
∂Ω (P,x) =

1

N∂Ω

N∂Ω∑
i=1

(P (xi)− g (xi))
2
. (5)

Here, NΩ and N∂Ω are the number of points in the sets x (interior) and x (boundary), and xi and xi
are the i-th such points in x and x.

PINNs approximate the exact solution u of the PDE by minimizing the loss in equation 3. However,
optimizing this loss using established methods such as gradient descent, ADAM, or LBFGS often
leads to unacceptably large errors or an inability to train at all (Wang et al., 2021a; 2022b). This
pathology has been attributed to the bad conditioning of the training problem (Krishnapriyan et al.,
2021). Next, we introduce CPINNs, a game-based formulation designed to mitigate these problems.

2.2 COMPETITIVE PHYSICS INFORMED NEURAL NETWORKS (CPINNS)

CPINNs introduce one or more discriminator networks D with input x ∈ Rd and outputs DΩ(x) and
D∂Ω(x). P and D compete in a zero-sum game where P learns to solve the PDE, and D learns to
predict the mistakes of P . This game is defined as a minimax problem

max
D

min
P
LCPINN

Ω (P,D,x) + LCPINN
∂Ω (P,D,x), (6)

where

LCPINN
Ω (D,P,x) =

1

NΩ

NΩ∑
i=1

DΩ(xi) (A[P](xi)− f(xi)) , (7)

LCPINN
∂Ω (D,P,x) =

1

N∂Ω

N∂Ω∑
i=1

D∂Ω(xi) (P (xi)− g (xi)) . (8)

Here, DΩ(xi) and D∂Ω(x) can be interpreted as bets by the discriminator that the PINN will over- or
under-shoot equation 1 and equation 2. Winning the bet results in a reward for D and a penalty for P ,
and a lost bet has the opposite effect.

The Nash equilibrium of this game is P ≡ u and D ≡ 0. Thus, iterative algorithms for computing
Nash equilibria in such zero-sum games can be used to solve the PDE approximately. This work
focuses on the CGD algorithm of Schäfer & Anandkumar (2019). Still, CPINNs can be trained with
other proposed methods for smooth game optimization (Korpelevich, 1977; Mescheder et al., 2017;
Balduzzi et al., 2018; Gemp & Mahadevan, 2018; Daskalakis et al., 2018; Letcher et al., 2019). In
our experiments, P and D are fully connected networks with hyperbolic tangent and ReLU activation
functions, respectively. Each network’s number of layers and neurons depends on the PDE problem.

2.3 AVOIDING SQUARES OF DIFFERENTIAL OPERATORS

Multiagent methods for solving PDEs may seem unorthodox, yet they are motivated by observations
in classical numerical analysis. Consider the particular case of a linear PDE and networks P,D with
outputs that depend linearly on their weight-vectors π and δ resulting in the parametric form

P(x) =

dim(π)∑
i=1

πiψi(x), D(x) =

dim(δ)∑
i=1

δiφi(x), (9)

for basis function sets {ψi}1≤i≤dim(π) and {φi}1≤i≤dim(δ). We focus our attention on the PDE
constraint in equation 1, which is evaluated at a set x of NΩ points. DefiningA ∈ RNΩ×dim(π) and
f ∈ RNΩ , this leads to

Aij := A[ψj ](xi), fi := f(xi) (10)
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and the discretized PDE
Aπ = f . (11)

PINNs solve equation 11 via a least squares problem

min
π
‖Aπ − f‖2, (12)

trading the equality constraint for a minimization problem with solution π = (A>A)−1A>f .

Since the matrix (A>A) is symmetric positive-definite, one can solve it with specialized algorithms
such as the conjugate gradient method (CG) (Shewchuk, 1994). This approach is beneficial for well-
conditioned nonsymmetric matrices but inappropriate for ill-conditioned A (Axelsson, 1977). This is
because κ(A>A) = κ(A)2, resulting in slow convergence of iterative solvers. Differential operators
are unbounded. Thus, their discretization leads to ill-conditioned linear systems. Krishnapriyan et al.
(2021) argue that the ill-conditioning of equation 12 causes the optimization difficulties they observe.

CPINNs turn the discretized PDE in equation 11 into the saddlepoint problem

min
π

max
δ
δ>(Aπ − f). (13)

The solution to this problem is the same as that of the system of equations[
0 A>

A 0

] [
π
δ

]
=

[
0
f

]
, with κ

([
0 A>

A 0

])
= κ(A). (14)

By turning equation 11 into the saddle point problem of equation 13 instead of the minimization form
of equation 12, CPINNs avoid squaring the condition number.

In light of the above, deciding between PINNs and CPINNs is the nonlinear analog of an old dilemma
in numerical linear algebra: should one trade solving a linear system for a least-squares problem?
This trade allows using simpler algorithms like CG at the cost of a squared condition number. Yet, it
is rarely beneficial for the ill-conditioned systems arising from discretized PDEs. As demonstrated in
the following experiments, the complexity of solving multiagent problems is a price worth paying.

3 RESULTS

3.1 OVERVIEW

This section compares PINNs and CPINNs on a series of model problems. The code used to produce
the experiments described below can be found under github.com/comp-physics/CPINN. We
study a two-dimensional Poisson problem (section 3.2), a nonlinear Schrödinger equation (section 3.3),
a viscous Burgers’ equation (section 3.4), and the Allen-Cahn equation (section 3.5). Throughout
the previous sections, we train PINNs using Adam and CPINN using adaptive competitive gradient
descent (ACGD) (Schäfer et al., 2020b). The latter combines CGD of Schäfer & Anandkumar (2019)
with an Adam-like heuristic for choosing step sizes.

ACGD uses GMRES (Saad & Schultz, 1986) and the Hessian vector products obtained by automatic
differentiation to solve the linear system defining the CGD update. Thus, iterations of (A)CGD are
considerably more expensive than those of Adam. To account for this difference fairly, we also
provide the number of forward passes through the neural network required by the two methods. An
Adam iteration amounts to a single forward pass and an ACGD iteration to two forward passes, plus
two times the number of GMRES iterations. We also tried other optimizers for both PINNs and
CPINNs but found them inferior to Adam and ACGD. A comparison is presented in section 3.6.

3.2 POISSON EQUATION

We begin by considering a two-dimensional Poisson equation:

∆u(x, y) = −2 sin(x) cos(y), x, y ∈ [−2, 2] (15)

with Dirichlet boundary conditions

u(x,−2) = sin(x) cos(−2), u(−2, y) = sin(−2) cos(y),

u(x, 2) = sin(x) cos( 2), u( 2, y) = sin( 2) cos(y).

4
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Figure 1: Comparison of CPINN and PINN on the Poisson problem of equation 15 in terms of relative
error. CPINN has a faster convergence rate and reduces the L2 error to 1.7 × 10−8, whereas the
PINN case has an L2 error of 1.2× 10−4 even with a larger computational budget.
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Figure 2: (a) Exact solution u to equation 1, absolute errors of (b) PINN + Adam after 3 × 107

training iterations and (c) CPINN + ACGD after 48 000 training iterations, and (d) the discriminator.

This problem has the manufactured solution

u(x, y) = sin(x) cos(y). (16)

The PINN implementation has losses

LPINN
∂Ω =

1

N∂Ω

N∂Ω∑
i=1

(P(xi, yi)− u(xi, yi))
2
, (17)

LPINN
Ω =

1

NΩ

NΩ∑
i=1

(Pxx(xi, yi) + Pyy(xi, yi) + 2 sin(xi) cos(yi))
2
, (18)

and the CPINN losses are

LCPINN
∂Ω =

1

N∂Ω

N∂Ω∑
i=1

D∂Ω(xi) (P(xi, yi)− u(xi, yi)) , (19)

LCPINN
Ω =

1

NΩ

NΩ∑
i=1

DΩ(xi) (Pxx(xi, yi) + Pyy(xi, yi) + 2 sin(xi) cos(yi)) . (20)

Figure 2 (a) shows the exact solution of the PDE and the absolute error of the best models trained
using (b) PINN and (c) CPINN, as well as an example of the discriminator output (d). The CPINN
achieves lower errors than the PINN by a factor of about 106 throughout most of the domain.
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Figure 3: Comparison of CPINN and PINN on the nonlinear Schrödinger equation 21 in terms of
relative errors. After 200 000 training iterations, PINN cannot reduce the L2 error further, plateauing
about 4×10−3 , whereas CPINN reduces the error to 6×10−4 under a smaller computational budget.
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Figure 4: The relative errors of CPINNs (current) and PINNs on the Burgers’ equation.

Figure 1 shows the relative L2 error of a PINN and a CPINN on the Poisson problem. CPINN
shows a faster convergence rate regarding the number of forward passes and training epochs, and its
accuracy is higher than that of PINN by 4 orders of magnitude.

3.3 NONLINEAR SCHRÖDINGER EQUATION

In this subsection, we apply the competitive PINN methodology to solve the Schrödinger equation

ut +
1

2
uxx + |u|2u = 0, x ∈ [−5, 5], t ∈ [0, π/2], (21)

where u(t, x) is the complex-valued solution and

u(0, x) = 2 sech(x), u(t,−5) = u(t, 5), ux(t,−5) = ux(t, 5) (22)

are the initial and boundary conditions.

The best results for CPINNs and PINNs are presented in fig. 3. CPINN reached an L2 relative error
of 6× 10−4 after 4.2× 103 training iterations with 4.1× 106 forward passes. PINN reached an L2

relative error of 5× 10−3 after 6.2× 106 training iterations, equivalent to 6.2× 106 forward passes.

3.4 BURGERS’ EQUATION

We next consider the case of the viscous Burgers’ equation. This nonlinear second-order equation is

ut + uux − (0.01/π)uxx = 0, x ∈ [−1, 1], t ∈ [0, 0], (23)

6
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Figure 5: Relative error for the Allen–Cahn equation. A CPINN and a PINN that uses the curriculum
learning approach of Wight & Zhao (2020) are shown. CPINN does not outperform this particular
PINN, which may be due to the overall low accuracy of both methods.

which has parameters matching Raissi et al. (2019). u(t, x) is the solution of the PDE and

u(0, x) = − sin(πx), u(t,−1) = u(t, 1) = 0 (24)

are the initial and boundary conditions. A comparison to CPINNs is presented in fig. 4. CPINN
exhibits an improved convergence rate and continues to reduce the error, whereas the progress of
PINN eventually stagnates.

3.5 ALLEN–CAHN EQUATION

We next consider the one-dimensional Allen–Cahn equation with periodic boundary conditions, a
cubically nonlinear equation given by

ut − 0.0001uxx + 5u3 − 5u = 0, x ∈ [−1, 1], t ∈ [0, 1], (25)

where u(t, x) is the solution of the PDE and

u(0, x) = x2 cos(πx), u(t,−1) = u(t, 1), ux(t,−1) = ux(t, 1) (26)

are the initial and boundary conditions. This example follows Raissi et al. (2019), and we use their
training and testing data.

Raissi et al. (2019) does not report the performance of a standard PINN and instead shows the
performance of a problem-specific modification that exploits the temporal structure of the problem.
Wight & Zhao (2020) observe that this problem is difficult to solve directly for PINNs and propose a
curriculum learning approach to remedy this problem.

We use the approach of Wight & Zhao (2020) for PINNs and a suitable adaptation for CPINN. On
this problem, CPINN is modestly outperformed by PINNs. This may be due to the overall slow
convergence that prevents us from reaching the regime where PINNs start to plateau. It is also
possible that our adaption of the curriculum learning approach of Wight & Zhao (2020) to CPINNs
could be improved.

3.6 OTHER OPTIMIZERS

We repeated our experiments with the Poisson problem using different optimizers to distinguish the
effects of CPINN and ACGD. We use Adam and SGD for PINNs, and basic CGD (BCGD, without
adaptive step sizes), ACGD, ExtraSGD, and ExtraAdam for CPINNs (Korpelevich, 1977; Gidel et al.,
2019). We observe that combined with CPINN, the nonadaptive algorithms BCGD and extragradient
improve over PINN trained with (the equally nonadaptive) SGD. The latter even begins to improve
over PINNs trained with Adam after sufficient iterations.

We could not achieve training via ExtraAdam on the CPINN strategy. The ACGD optimizer achieves
much better results than all others. We conclude that CPINN improves over PINN, but the full
realization of the CPINN advantage is enabled by the robust and adaptive training afforded by ACGD.
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Figure 6: Comparison of PINNs and CPINNs with different optimizers for the Poisson problem.

Table 1: Performance of CPINNs and PINNs on the 2D Poisson problem of equation 15.

Optimizer Iterations L2 Rel. Error LPINN LPINN
Ω LPINN

∂Ω

PI
N

N Adam 3× 107 1.2× 10−4 1.4× 10−8 8.4× 10−8 5.5× 10−9

SGD 2.2× 107 1.3× 10−3 1.1× 10−6 5.2× 10−7 6.3× 10−7

C
PI

N
N

ACGD 4.8× 104 1.7× 10−8 2.1× 10−14 2× 10−14 6× 10−16

CGD 6× 105 3.5× 10−4 5.1× 10−7 3.5× 10−7 1.7× 10−7

ExtraAdam 8.5× 106 1.6 1.6× 106 1.6× 106 0.2
ExtraSGD 8.5× 106 1.2× 10−4 1.2× 10−7 9.2× 10−8 3× 10−8

4 CONNECTIONS TO EXISTING WORK

Saddle point formulations arise in Petrov–Galerkin and mixed finite-element methods, which use
different finite-dimensional function spaces to represent the solution (called trial functions) and
measure the violation of the equations (called test functions) (Quarteroni & Valli, 2008; Fortin &
Brezzi, 1991). The neural networks introduced here, P and D, are nonlinear analogs of trial and test
spaces. Unlike our approach, Deep Petrov–Galerkin of Shang et al. (2022) only parameterizes the
trial space by a neural network and uses a conventional discretization such as finite elements for the
test space. They only train the last layer while keeping all other layers fixed after initialization.

Saddle point problems in PDEs can be interpreted geometrically and have a game-theoretic interpreta-
tion (Lemaire, 1973). In a complementary game-theoretic approach, Owhadi (2017) cast computation
as a game between a numerical analyst and an environment, using ideas from decision theory (Wald,
1945). Saddle point problems also arise from the introduction of Lagrange multipliers, which are
used to cast a constrained optimization problem as an unconstrained saddle point problem (Brezzi,
1974). These discriminators can be viewed as neural-network-parametrized Lagrange multipliers that
enforce distributional equality (in GANs) or satisfaction of the PDE (in CPINNs).

Our work is thus related to recent efforts that combine CGD with Lagrange multipliers to solve
constrained optimization problems arising from reinforcement learning and computer graphics (Bacon
et al., 2019; Yu et al., 2021; Soliman et al., 2021). The need for constrained training of neural networks
also arises in other applications, resulting in an increasing body of work on this topic (Pathak et al.,
2015; Donti et al., 2021; Lokhande et al., 2020; Fioretto et al., 2020).

Following section 1, Deep Ritz exploits the fact that some PDEs can be cast as minimization problems
without squaring the condition number (E & Yu, 2017), expressing equation 11 as

min
π

π>Aπ

2
− π>f ,

for a symmetric positive definite matrixA. Such a formulation is not always available, and even if it
exists, one still must enforce the PDE boundary conditions (Liao & Ming, 2019). Zang et al. (2020)
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uses a weak PDE formulation to derive a minimax formulation. In the notation of section 2.3, their
approach is similar to using the zero-sum game

min
π

max
δ

log
((
π>Aδ

)2)− log
(
‖δ‖2

)
.

Wang et al. (2021a) and Xu et al. (2021) adapted the penalty weights in PINNs during training to
improve accuracy. Different from the D output of CPINNs, these weights are multiplied with the
square violation of the equality constraint, which is always greater than zero. Therefore, they do
not correspond to a meaningful zero-sum game because the optimal discriminator strategy, in this
case, drives all weights to infinity. Alternatively, Krishnapriyan et al. (2021) recommends the use
of curriculum learning. They train the initial PINN on a better-conditioned variant of the original
problem that slowly transforms into the target problem during training.

5 DISCUSSION

This work introduced CPINNs, an agent-based approach to the neural-network-based solution of
PDEs. CPINNs are crafted to avoid the ill-conditioning resulting from traditional PINNs least squares
loss functions. Section 3 showed that CPINNs trained with ACGD improve upon the accuracy of
PINNs trained with a comparable computational budget and can solve PDEs beyond even single-
precision floating-point accuracy, the first approach with this capability.

With CPINNs, one can now achieve single-precision errors, but significant computation is still
required. This is due to the number of CG iterations performed for each ACGD step. Reducing
this overhead is a direction for future work. Potential solutions to this problem include cheaper
approximate solutions of the matrix inverse, different iterative solvers, or the recycling of Krylov
subspaces (Paige & Saunders, 1975; Parks et al., 2006).

The present experiments used the same training points for each iteration, following Raissi et al.
(2019). In the future, we will investigate the effects of batch stochasticity on training accuracy. We
also plan to investigate competitive mirror descent (CMD) for partial differential inequalities and
contact problems (Schäfer et al., 2020a; Lions, 1972) and, more generally, CPINN-like approaches to
other problems involving the constrained training of neural networks.
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A APPENDIX

This appendix contains details on the experiments mentioned in Section 3.

All PINN models and CPINN generators use the hyperbolic tangent as the activation function.
Discriminators in CPINNs contain ReLU as the activation function. The number of neurons and
layers in the neural networks varies for each equation. We use the GMRES-based ACGD implemen-
tation of Zheng (2020), available under the MIT license at https://github.com/devzhk/
cgds-package, as well as the implementation of ExtraGradient methods available under the MIT
license at https://github.com/GauthierGidel/Variational-Inequality-GAN.
For the experiments in section 3.4, 3.5,3.3 we use the training and testing data sets from https:
//github.com/maziarraissi/PINNs/tree/master/main, which are available under
the MIT license.

A.1 POISSON EQUATION

For the Poisson equation, we use 5 000 training points within the domain [−2, 2]× [−2, 2], 50 training
points on each side of the domain boundary. We randomly selected all training points with Latin
Hypercube sampling. The PINN model contains 3 hidden layers with 50 neurons in each layer. The
discriminator in the CPINN contains 4 hidden layers with 50 neurons in each layer.

The PINNs are trained with Adam (Kingma & Ba, 2014) and SGD (Ruder, 2016). Adam and ACGD
both use a learning rate of 10−3, beta values β1 = 0.99 and β2 = 0.99. The ε of Adam and ACGD
are each set to 10−8 and 10−6, resepctively (all parameters following the usual naming conventions).
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A.2 SCHRÖDINGER’S EQUATION

We use Latin Hypercube sampling to randomly select 20 000 training points within the domain and
50 points on each boundary.

We test several different network configurations and hyperparameters. This includes combinations of
number of neurons per layer for each network, including 100 and 200 neurons per layer; learning rates
of 10−5, 10−4, 5× 10−4, 10−3, 10−2, and 2× 10−2; and Adam and ACGD β values of (0.99, 0.99)
and (0.9, 0.999).

We chose 10−4 and 10−3 as the learning rate, (0.9, 0.999) and (0.99, 0.99) as the β values, 10−8 and
10−6 as the ε for Adam and ACGD, respectively. The iterative linear solve of the ACGD optimizer
uses a relative tolerance of 10−7 and absolute tolerance of 10−20.

The PINN presented in fig. 3 contains 4 hidden layers with 100 neurons per layer, and the discriminator
in CPINN contains 4 hidden layers with 200 neurons per layer.

A.3 BURGERS’ EQUATION

For the Burgers’ equation, we use Latin Hypercube sampling to randomly select 10 000 training points
within the domain, 100 points at the initial condition and 100 points for each boundary condition
specified in eq. (24).

The PINN model contains 8 hidden layers with 60 neurons per layer, and the discriminator in the
CPINN contains 8 hidden layers with 60 neurons per layer.

The β of Adam and ACGD are (0.99, 0.99), and the learning rates of both optimizers are 10−3. The
ε are 10−8 and 10−6 for Adam and ACGD, respectively. The iterative linear solve of the ACGD
optimizer had a relative tolerance of 10−7 and an absolute tolerance of 10−20.

A.4 ALLEN-CAHN EQUATION

For the Allen Cahn equation, we randomly select 10 000 training points within the domain for the
PDE constraint in eq. (25), 100 and 256 points for the initial condition and boundary condition
specified in eq. (26), respectively. The learning rates of Adam and ACGD are both 10−3, the β of
Adam and ACGD are (0.99, 0.99), and the ε are 10−8, 10−6, respectively.

The PINN model contains 4 hidden layers with 128 neurons per layer for the adaptive sampling
method experiments. The discriminator in the CPINN contains 4 hidden layers with 256 neurons per
layer. GMRES was used as the inner iterative solver in ACGD, with a relative tolerance of 10−7 and
an absolute tolerance of 10−20.

For the curriculum learning approach, we divide the 10 000 points into 10 subsets based on the time
coordinate. Once the LPINN

Ω on the current training set is less than 10−7, we include the next subset
of collocation points in the training.

A.5 OTHER OPTIMIZERS

In addition to ACGD and Adam, we also use SGD, CGD (Schäfer & Anandkumar, 2019), ExtraAdam
and ExtraSGD (Gidel et al., 2019) to approximate the solution of equation 6 in section 3.6. We
test several hyperparameter combinations for each optimizer. The learning rates vary included
10−4, 5 × 10−4, 10−3, 10−2, and 2 × 10−2. The β of Adam and ACGD are (0.99, 0.99). We
tested several β values for Adam and ACGD but did not observe meaningful changes to our results
or conclusions when varying them. For the ExtraAdam optimizer, we tested several pairs of β
values, from 0.3, 0.5, 0.7, 0.9, 0.99, though none of them provide accuracy competitive with the other
optimizers. For CGD, SGD and ExtraSGD, the learning rates are 10−2. The CGD optimizer uses
conjugate gradient as the iterative solver with relative tolerance 10−12 and absolute tolerance 10−20.
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