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Parsimonious inertial cavitation rheometry via bubble
collapse time†

Zhiren Zhu,‡a Sawyer Remillard,‡b, Bachir A. Abeida, Danila Frolkinc, Spencer H.
Bryngelsone, f ,g, Jin Yangc,d , Mauro Rodriguez, Jr.§b, and Jonathan B. Estrada§a

The rapid and accurate characterization of soft, viscoelastic materials at high strain rates is of
interest in biological and engineering applications. Examples include assessing the extent of tissue
ablation during histotripsy procedures and developing injury criteria for the mitigation of blast in-
juries. The inertial microcavitation rheometry technique (IMR, Estrada et al., J Mech Phys Solids,
2018, 112, 291-317) allows for the characterization of local viscoelastic properties at strain rates up
to 108 s−1. However, IMR now typically relies on bright-field videography of a sufficiently translucent
sample at ≥1 million frames per second and a simulation-dependent fit optimization process that
can require hours of post-processing. Here, we present an improved IMR-style technique, called par-
simonious inertial microcavitation rheometry (pIMR), that parsimoniously characterizes surrounding
viscoelastic materials. The pIMR approach uses experimental advancements to estimate the time to
first collapse of the laser-induced cavity within approximately 20 ns and a theoretical energy balance
analysis that yields an approximate collapse time based on the material viscoelasticity parameters.
The pIMR method closely matches the accuracy of the original IMR procedure while decreasing
the computational cost from hours to seconds and potentially reducing reliance on ultra-high-speed
videography. This technique can enable nearly real-time characterization of soft, viscoelastic hydro-
gels and biological materials with a numerical criterion assessing the correct choice of model. We
illustrate the efficacy of the technique on batches of tens of experiments for both soft hydrogels and
fluids.

1 Introduction
The characterization of viscoelastic soft materials undergoing
fast, finite deformations is necessary for a wide range of appli-
cations. These include, but are not limited to, the prediction of
biological tissue damage due to blunt impact and blast events1,2,
the design of acoustically-responsive scaffolds for drug delivery3,
and the modeling of non-invasive laser-4 and ultrasound-based
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c Department of Aerospace Engineering and Engineering Mechanics, University of Texas,
Austin, TX, USA.
d Texas Materials Institute, University of Texas, Austin, TX, USA.
e School of Computational Science and Engineering, Georgia Institute of Technology,
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§ These authors contributed equally to this work; please direct email correspondence
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surgical procedures5–7. Notably, the United States Food and Drug
Administration (FDA) recently approved the clinical treatment
of liver cancer with histotripsy, a novel technique that ablates
diseased tissues with ultrasound-induced cavitation8,9. A press-
ing need in histotripsy is an on-the-fly assessment of the degree
of therapy completion, which can be reflected through the me-
chanical response of the treated biomaterial10,11. However, soft
materials such as hydrogels are challenging to characterize due
to their low elastic shear modulus, which ranges from 100 Pa to
1 MPa, and the difficulties of gripping and manipulating the spec-
imens during experiments. To characterize materials with high
compliance and, correspondingly, slow shear wave speed, tradi-
tional high-strain-rate experiments, such as the Kolsky bar, must
be supplemented with pulse shaping, weak signal sensing, and/or
other complicating techniques12. Furthermore, soft biological tis-
sues often exhibit spatial heterogeneity, increasing the difficulty
of measuring their material property distribution with conven-
tional methods that only provide a macroscale average modulus.
Bio-inspired material systems fabricated to reproduce these func-
tional gradients are similarly difficult to characterize.

The aforementioned challenges necessitate a technique to lo-
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cally assess the high strain rate and finite deformation behavior
of soft materials. Crosby et al. first developed needle-induced cav-
itation rheology as an approach to probe the local elastic proper-
ties of soft materials13,14. A cavity of air or immiscible liquid is
injected into the characterized media. The elastic modulus is de-
termined from the pressure and bubble radius at the onset of me-
chanical instability. This quasi-static approach has been extended
in recent years to a ballistic strain-rate regime of approximately
104 s−1 by Milner and Hutchens15,16. Cohen and co-workers in-
troduced the capability to cyclically expand and relax the needle-
induced cavity at controlled stretch rates17,18, enabling finite de-
formation characterization of viscoelastic materials. The iner-
tial microcavitation rheometry (IMR) technique, introduced by
Estrada et al. 19 and improved by others recently20–22, accesses
a higher range of strain rates by using laser-induced cavitation
(LIC) in soft, hydrated materials (i.e., with shear moduli below
∼1 MPa). An ultra-high-speed camera images the bubble kine-
matics and the viscoelastic properties of the cavitated media are
inversely characterized according to an inertial cavitation bub-
ble model23,24 with refinements accounting for a two-component
mixture of bubble content with heat diffusion and mass trans-
fer25–29 and stress field in the surrounding media30–33.

IMR inversely characterizes viscoelasticity at strain rates reach-
ing 103 −108 s−1 but has only been successfully applied to charac-
terize nearly transparent materials using ultra-high-speed imag-
ing (rates above 270,000 frames per second). The reliance on
the full dynamics acquired from high-speed, bright-field videog-
raphy of the cavity restricts assessment to experimental systems
that produce accurate bubble images, which itself is a product
of, e.g., camera sensitivity and the material turbidity. Increasing
the exposure time to combat low light throughput works against
the maximum frame rate, thus suggesting a need for us to reduce
the reliance on the transient dynamics for the characterization of
challenging optical systems.

Furthermore, the computational cost of the forward simulation,
optimization, and best-fit procedure is restrictive, particularly in a
potential desired end-case-usage for near on-the-fly characteriza-
tion, for example, to assess the extent of diseased tissue removal
during histotripsy. Each forward simulation requires about ten
seconds. Batch-fitting multiple experiments simultaneously and
increasing the number of model parameters cause an exponen-
tial increase in the required forward simulations. Hence, we seek
to construct an approximate theoretical model that characterizes
materials based on just the most essential data drawn from multi-
ple experiments, i.e., maximum radius, quasi-equilibrium radius,
and time to first collapse. The potential benefit here of a com-
putationally inexpensive approximate model is twofold. In cases
where an approximate characterization of material viscoelasticity
is sufficient for predictiveness, the procedure herein represents a
rapid method substituting the accurate yet time-consuming IMR
procedure. If accuracy remains critical, this procedure comple-
ments IMR by vastly paring down the computational space prior
to an accurate bubble-dynamics-based inverse characterization.

This style of approximate model can also be extended to ap-
plications in which the time to collapse is used to quantitatively
describe some system behavior or parameters of interest. For

example, the collapse time measured for LIC in the vicinity of
agarose hydrogels was compared against the Rayleigh collapse
time (a simplified metric assuming the bubble is just a void) by
Sieber et al. 34 to examine the effect of an elastic boundary. Marsh
et al. 35 and Ohl et al. 36 conducted shock-induced cavitation ex-
periments in water and cervix cell assays, respectively, and ap-
proximated average velocity and pressure in the resulting jet flow
using the Rayleigh collapse time. These types of analyses could
thus be enhanced by our approximate collapse time model ac-
counting for material behavior and other bubble physics.

Herein, we use the modified Rayleigh collapse time approach
to develop a strategy for the parsimonious characterization of
viscoelastic materials that can be described with up to three-
parameter models. In contrast to prior work19, this approach
enables the use of data from multiple experiments to arrive at a
batch-fit solution. The strategy leverages high-fidelity measure-
ments of the maximum bubble radius, the long-term equilibrium
bubble radius, and the time from maximum expansion to first
bubble collapse. These quantities of interest are distinctly related
through the ultra-high-rate elastic and viscous behaviors of soft
materials. In Section 2, we present an LIC experiment setup ca-
pable of quantifying the time of collapse to an accuracy of ap-
proximately 20ns. The experiments are complemented with an
energy balance analysis that approximately quantifies the effects
of material viscoelasticity and secondary factors (viz., surface ten-
sion, bubble pressure, and dilatational wave speed) on the time
to the first bubble collapse. We then introduce the parsimonious
inertial microcavitation rheometry (pIMR) procedure enabled by
these experimental and theoretical advancements. The consis-
tency of the procedure is verified in Section 3 with synthetic ex-
periments. We demonstrate in Section 4 high-fidelity viscoelastic
model parameterization from tens of experiments in viscoelastic
liquids and hydrogels, with computational post-processing that
takes only seconds. In Section 5, we discuss the implications of
the results obtained and the limitations of the proposed strategy.
We provide concluding remarks in Section 6.

2 Theory and Methods

2.1 Bubble dynamics model

We summarize herein the bubble dynamics model serving as the
theoretical basis of the original IMR method. A more thorough
discussion of the theory, including its underlying assumptions and
regimes of applicability, can be found in Estrada et al. 19 . The IMR
framework is founded on the classical Keller–Miksis model of bub-
ble dynamics23,24 and it has been extensively validated for iner-
tial cavitation in nearly-incompressible, viscoelastic, soft materi-
als ranging from polyacrylamide19,20, agarose37, and gelatin3,22

hydrogels to healthy and diseased human liver tissues38. Experi-
mental quantification of the deformation field in inertially cavitat-
ing hydrogels also confirmed the validity of the bubble dynamics
model when the bubble wall velocity is lower than 0.08 times the
longitudinal wave speed in the surrounding material20.

Briefly, the bubble dynamics model considers a spherical bub-
ble in an infinite surrounding material environment subjected to
a pressure change that causes rapid radial motion, as depicted
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Reference
Configuration

Deformed
Configuration

Soft material

Bubble wall

Fig. 1 Schematic representation of the spherical bubble considered in
the bubble dynamics and approximate collapse time models. The nearly
incompressible, viscoelastic material surrounding the bubble is modeled
as a finite deformation, standard linear solid (SLS) described by a ground-
state elastic shear modulus G, a viscous shear modulus µ, and a relaxation
time scale τ1. When τ1 → 0, the SLS model becomes a Kelvin–Voigt
model.

in Figure 1. The material outside the cavity is viscoelastic and
approximated as nearly incompressible. At the bubble wall, the
traction due to the material stress is balanced by the internal pres-
sure of the bubble content and the surface tension. We denote the
equilibrium, stress-free radius of the spherical bubble as R0 and
the referential radial coordinate for a material point in the sur-
rounding viscoelastic medium to be r0 ∈ [R0,∞), measured from
the center of the bubble to the infinite far field. Due to the bal-
ance of mass, the deformed radial coordinate r and velocity v of
a material point r0 at time t in an incompressible medium are

r = (r3
0 +R3 −R3

0)
1/3, v =

dr
dt

= Ṙ
R2

r2 , (1)

where R(t) is the evolving radius of the bubble. The balance of
linear momentum in the radial direction requires that

ρ

(
∂v
∂ t

+ v
∂v
∂ r

)
=−∂ p

∂ r
+

∂ srr

∂ r
+

2
r
(srr − sθθ ) , (2)

where ρ is the material density of the surrounding material, p the
hydrostatic pressure in the material, srr and sθθ the normal ra-
dial and normal circumferential components of s, the deviatoric
Cauchy stress in the material. There need not be a d/dt term
for the density in (2) because we have used continuity of mass
to simplify. A perturbation analysis bridging the near- and far-
fields of the bubble23,24,39 leads to a correction of equation (1)
accounting for a finite pressure wave speed c in the material and
the energy transfer via outward radial acoustic emission. Then,
integrating equation (2) over r from r = R to r → ∞ and consid-
ering the traction boundary condition at the bubble wall results
in what is known as the Keller–Miksis equation describing bubble
dynamics,(

1− Ṙ
c

)
RR̈+

3
2

(
1− Ṙ

3c

)
Ṙ2

=
1
ρ

(
1+

Ṙ
c

)(
pb −

2γ

R
+S− p∞

)
+

1
ρ

R
c

˙(
pb −

2γ

R
+S
)
,

(3)

where overdots denote derivatives with respect to time t, pb the
internal bubble pressure, p∞ the far-field pressure, γ the bubble

wall surface tension, and S the stress integral defined as

S =
∫

∞

R

2
r
(srr − sθθ )dr. (4)

We do not simulate the complex plasma physics contributing to
the initial growth of the laser-induced cavity. Instead, following a
conventional approach for modeling LIC19,25,28,29,40, we assume
that the bubble contents and the surrounding medium reaches
thermodynamic equilibrium at maximum bubble expansion and
model the bubble dynamics from the instance of maximum bubble
expansion. When considering surrounding material with history-
dependent viscoelasticity, we estimate the initial condition of the
stress integral S according to a simplified model of the bubble
growth phase, as detailed below in Section 2.1.2 for the Maxwell
model. We assume that the bubble contains a mixture of wa-
ter vapor and other, non-condensible gas components during the
rapid bubble dynamics. Mass and heat transfer of the two-part
bubble contents are assumed to obey Fick’s and Fourier’s laws,
resulting in a set of PDEs26–28. Following earlier works19,20,40,
we assume that the surrounding material has a sufficiently large
heat capacity and thus remains isothermal at an ambient temper-
ature. Numerical solutions to the Keller–Miksis equation coupled
with the bubble content equations are obtained with the ode23tb
function in MATLAB (The MathWorks, Inc., Natick, MA).

2.1.1 Non-dimensionalization and solution of bubble dy-
namics model

We follow existing work to non-dimensionalize the governing
equations and clarify the interactions between material param-
eters19, and list non-dimensional parameters in Table 1, where
Rmax is the maximum radius of the bubble, G1 is the shear modu-
lus associated with the maxwell element, and vc =

√
p∞/ρ is the

characteristic velocity. The non-dimensional Keller–Miksis equa-
tion describing the evolution of the non-dimensional bubble ra-
dius R∗ is(

1− Ṙ∗

c∗

)
R∗R̈∗+

3
2

(
1− Ṙ∗

3c∗

)
Ṙ∗2 =

(
1+

Ṙ∗

c∗

)(
p∗b −

1
WeR∗ +S∗−1

)
+

R∗

c∗

˙(
p∗b −

1
WeR∗ +S∗

)
.

(5)

Unless stated otherwise, we assume ρ = 998.2kg/m3, p∞ =

101.3kPa, c = 1484m/s, and γ = 0.072N/m. For the viscous fluids
characterized in Section 4.1, we assume using the rule of mix-
tures that ρ = 1154kg/m3 for the mixture of water and glycerin
and ρ = 1100kg/m3 for the mixture of water and polyethylene gly-
col (PEG 8000) . Assuming a constant temperature of 298.15 K in
the surrounding material, the material parameters related to the
heat and mass transfer of bubble contents are defined according
to Estrada et al. 19 .

2.1.2 Stress integral in the surrounding medium

The stress integral S∗ for the viscoelastic constitutive models con-
sidered in this work is tabulated in Table 2. We consider finite vis-
coelasticity constitutive models with stress responses that are ad-
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Table 1 Dimensionless quantities in the Keller–Miksis Equation.

Dimensional quantity Dimensionless quantity Name

t t∗ = t vc/Rmax Time
R R∗ = R/Rmax Bubble-wall radius

R0 R∗
0 = R0/Rmax Equilibrium bubble-wall radius

c c∗ = c/vc Material wave speed
pb p∗b = pb/p∞ Bubble pressure
γ We = p∞Rmax/(2γ) Weber number
S S∗ = S/p∞ Stress integral
G Ca = p∞/G Cauchy number
µ Re = ρvcRmax/µ Reynolds number

τ1 = µ/G1 De = µvc/(G1Rmax) Deborah number

Table 2 Summary of material stress integrals.

Material model Stress integral relationship S∗

Neo-Hookean S∗NH = [4(R∗
0/R∗)+

(
R∗

0/R∗)4 −5]/(2Ca)
Newtonian S∗v =−(4/Re)Ṙ∗/R∗,

Kelvin–Voigt S∗KV = S∗v +S∗NH

Maxwell DeṠ∗m +S∗m =−(4/Re)Ṙ∗/R∗

Standard linear solid (SLS) S∗SLS = S∗m +S∗NH

ditively decomposed into those of three elementary components:
a neo-Hookean hyperelastic contribution, a Newtonian viscous
contribution, and a Maxwell fading memory viscoelastic contribu-
tion. The stress integral for the Kelvin–Voigt viscoelastic models
follow our previous work19, in which a neo-Hookean hyperelastic
spring is arranged in parallel with a Newtonian viscous dashpot.
The standard linear solid (SLS) model (sometimes referred to as
the Zener model) consists of a neo-Hookean hyperelastic spring
parallel to a Maxwell branch.

Assuming that the characteristic time scale of the bubble oscil-
lation is longer than the time scale of the exponential relaxation
of a Maxwell material, its stress integral satisfies

S∗+DeṠ∗ =− 4
Re

Ṙ∗

R∗ .
(6)

Due to the fading memory of the Maxwell material, a non-zero
stress integral remains at the end of the bubble growth phase,
contributing to the ensuing bubble collapse. This quantity is nu-
merically evaluated by advancing the ODE (6) from the beginning
of the growth phase, with initial conditions R0 and Ṙ = Ṙi > 0,
with Ṙ decreasing to 0 at the end of the growth phase. The
fminsearch function in MATLAB is used to iteratively solve for
Ṙi to minimize |R−Rmax| at the end of the growth phase. The
value of S at the end of the growth phase is then determined.
Heat and mass transfer are neglected in these simulations of the
bubble growth phase.

These models, or their modified hyperelastic equivalents, have
successfully characterized hydrogels with IMR3,19,20,37,41. In this
work, we are primarily interested in the contribution of mate-
rial viscoelasticity, S∗, which in turn influences the collapse time.
We note that the primary non-dimensional parameters of cali-
bration interest, therefore, are the Cauchy number (ground-state
elasticity), Ca, the Reynolds number (ground-state viscosity), Re,
and/or the Deborah number (relaxation time), De, all defined in

Table 1. Thus, in the following sections we distinguish and sep-
arately quantify the collapse-time effects from these three mate-
rial parameters for characterization from those arising from other
bubble physics.

2.2 Energy balance analysis and analytical estimates of col-
lapse time

We modify Lord Rayleigh’s original analysis to obtain a more ac-
curate prediction of a bubble collapse within hydrogel-like mate-
rials. Lord Rayleigh utilized an energy balance approach42 with
the following four assumptions: (i) the bubble has no contents,
(ii) there is no surface tension between the void and the surround-
ing material, and the surrounding material is (iii) incompressible
and (iv) inviscid. Thus, the potential and kinetic energy of the
surrounding material dictate the evolution of the bubble radius.
Under these conditions, the Keller–Miksis equation (5) simplifies
to,

R∗R̈∗+
3
2

Ṙ∗2 =−p∗∞, (7)

where p∗∞ is the non-dimensional liquid pressure (p∗∞ = 1). The
potential energy of the inviscid liquid surrounding the bubble is
the volume integral of the non-dimensional liquid pressure,

E∗
LP =

∫
V ∗

b

p∗∞dV ∗ = p∗∞V ∗
b , (8)

where V ∗
b is the volume of the bubble. The kinetic energy of the

liquid is

E∗
LK =

∫
V ∗

l

1
2

ρ
∗u∗2

r dV ∗ =
∫

V ∗
l

1
2

ρ
∗
(

R∗2Ṙ∗

r∗2

)2

dV ∗ = 2πρ
∗R∗3Ṙ∗2,

(9)

where ρ∗ is the non-dimensional liquid density (ρ∗ = 1). The
void is assumed to begin at rest, corresponding to an initial ki-
netic energy of zero. The energy balance is then (4π/3)(R∗3 −
1)+ 2πR∗3Ṙ∗2 = 0. Isolating the bubble wall velocity as a func-
tion of the radius, Ṙ∗(R∗(t∗)), and integrate to the closure of the
bubble, we obtain the Rayleigh collapse time

t∗RC =−
∫ 0

1

[
−2

3

(
1− 1

R∗3

)]−1/2
dR∗ =

√
3π

2
Γ[5/6]
Γ[1/3]

≈ 0.91468,

(10)
where Γ[·] is the gamma function. To obtain the dimensional
form, we multiply by the characteristic timescale, Rmax

√
ρ/p∞ to

obtain the dimensional form.
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2.2.1 General approach for modified Rayleigh collapse time

We can generalize a Rayleigh-type model as the following equa-
tion

R∗R̈∗+
3
2

Ṙ∗2 =−1+ f ∗(R∗, Ṙ∗, R̈∗,S∗,c∗m,R
∗
0, p∗b, . . .), (11)

where f ∗ is a sum of different physical phenomena (see Table 3).
f ∗ can also be interpreted as a force or a resistance to force. Fol-
lowing the work of Yang et al. 43 , for a constant f ∗ an analytical
solution for the modified Rayleigh collapse time can be obtained.
Thus, we define a time-averaged f ∗ acting on the bubble from the
surroundings as

f ∗ =
1
t∗c

∫ t∗c

0
f ∗ dt∗ =

1
t∗c

∫ 0

1

f ∗

Ṙ∗ dR∗. (12)

Thus, an ansatz for the reduction in the liquid potential energy,
and corresponding energy balance are,

E∗
f =−4

3
π f ∗R∗3, (13)

4
3

π

(
1− f ∗

)
(R∗3 −1)+2πR∗3Ṙ∗2 = 0, (14)

respectively. Following the procedure of Lord Rayleigh, the ap-
proximate bubble wall velocity is

Ṙ∗ ≈−
[

2
3

(
1− f ∗

)( 1
R∗3 −1

)]1/2
, (15)

with the general approximate modified collapse time

t∗c ≈
∫ 0

Rmax

−
[

2
3

(
1− f ∗

)( 1
R∗3 −1

)]−1/2
dR∗ = t∗RC

(
1− f ∗

)−1/2
.

(16)
Since time-averaging is a linear operator, we can write the to-
tal collapse time modification to be equal to the following, f ∗ =
∑α f ∗α , where α is indexing different physical effects. We con-
sider the constitutive terms in equation (5) individually. Since
inertia dominates the collapse, the interaction of compressibil-
ity with other physical phenomena are second-order and are ne-
glected. Additionally, for simplicity, this analysis will neglect heat
and mass transfer in and outside the bubble. Thus, the vapor
pressure in the bubble is constant.

The time averaging of f ∗ is similar to linearization in tradi-
tional perturbation methods. That is, if any of the forcing terms
approach unity, the approximation will break down and exhibit
large errors when compared to the exact solution. Neo-Hookean
elasticity is an exception, as the leading order elastic forcing term
is constant. This exception permits reasonable predictions of the
elastic contribution to the collapse time, even for small Ca.

2.2.2 Bubble pressure effects

We assume that there are two primary gases inside the bubble:
(1) water vapor and (2) a non-water gas phase. The latter con-
sists of air and vaporized material that diffuses back into the ma-
terial over time scales much longer than that of inertial collapse.
We consider the bubble pressure as the sum of partial pressures of

the gases present44: p∗b = p∗v + p∗go(R
∗
0/R∗)3κ , where κ is the ratio

of the heat capacity at constant pressure, CP, to the heat capacity
at constant volume, CV . Additionally, the water vapor pressure
is p∗v, and we assume the non-condensible gas to be polytropic,
where p∗go is the equilibrium bubble pressure.

In the limit R∗ → 0 (i.e., infinite bubble pressure), the evalua-
tion of the mean value of the bubble pressure is non-convergent.
Furthermore, there is no expression available for Rmin such that
we could obtain a finite integrated result. Since f ∗bc ∝ p∗goR∗3κ

0 ,
then f ∗bc ∝ p∗goR∗3κ

0 and a proportionality constant results through
integration of R such that

f ∗bc = Bp∗goR∗3κ
0 + p∗v,

where B is obtained by numerically solving the exact collapse
time integral. The exact collapse time is found by considering the
resistive force of the bubble contents preventing collapse. The
bubble internal energy, or the reduction of liquid potential energy
in the presence of bubble contents, is

E∗
BIE =

∫
V ∗

b

−p∗bdV ∗ =
∫

V ∗
b

−p∗go

(
V ∗

0
V ∗

b

)κ

dV ∗ =
p∗b V ∗

b
κ −1

. (17)

For the special (isothermal) case of κ = 1, the bubble internal
energy:

E∗
BIE =−4

3
π R∗3

0 p∗golog
[

4
3

πR∗3
]
. (18)

Including the bubble internal energy in the energy balance
with the liquid potential (8) and kinetic (9) energies, the non-
dimensional collapse time is

t∗c =
∫ R∗

min

1
−
(

2qκ

3

)−1/2
dR∗ (19)

where

qκ =


1

R∗3

(
1+

p∗goR∗3κ
0

κ −1
−

p∗goR∗3

κ −1

(
R∗

0
R∗

)3κ

−R∗3

)
, forκ ̸= 1,

p∗goR∗3
0

log
(
R∗3)

R∗3 +
1

R∗3 −1, forκ = 1.

(20)
We evaluate equation (19) for a small (0.01) non-dimensional

equilibrium radius. The integral is evaluated by setting the min-
imum radius to zero. Only the real part of the result is consid-
ered, which is equivalent to evaluating the integral from 1 to the
minimum radius. For the special cases of κ = 1.4 (isentropic)
and κ = 1, we obtain B = 2.1844 and 1.4942, respectively. To be
consistent with the initial bubble pressure in IMR19, we selected
κ = 1 for the pIMR solver.

2.2.3 Weak compressibility effects

In Table 3, the third term of f ∗wc dominates the weak compress-
ibility effect during the primary bubble collapse. The third terms
is associated with the liquid potential which dominates for most
of the collapse phase. Hence, we neglect the other two weak
compressibility terms related to the kinetic energy. Thus,
f ∗wc ≈−McṘ∗, where Mc = 1/c∗m is the characteristic Mach number.
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Table 3 Physical phenomena and corresponding functional changes to the Rayleigh–Plesset equation. The right-most column sums to the overall
function that transforms Eq. (11) into (5) (under the polytropic gas assumption).

Phenomenon Function modifying Rayleigh–Plesset equation f ∗

Bubble pressure f ∗bc = p∗b = p∗go(R
∗
0/R∗)3κ + p∗v,sat

Weak compressibility f ∗wc = (Ṙ∗/c∗m)R
∗R̈∗+(Ṙ∗/2c∗m)Ṙ

∗2 − Ṙ∗/c∗m
Surface tension f ∗We =−1/(WeR∗)

Material response f ∗S = S∗

Compressibility affecting bubble pressure f ∗cbc = Ṙ∗p∗b/c∗m +R∗ ṗ∗b/c∗m
Compressibility affecting material response f ∗cS = Ṙ∗S∗/c∗m +R∗Ṡ∗/c∗m

Time averaging f ∗wc for the duration of the collapse and solving
explicitly,

f ∗wc =
(1− f ∗c)

1/2

t∗RC

∫ 0

1
−McdR∗ =

(1− f ∗wc)
1/2

t∗RC/Mc
=

2Mc

Mc +
√

M2
c +4t∗2

RC

.

(21)

2.2.4 Surface tension effects

The surface tension of the water-containing material plays a non-
negligible role during the collapse. Time-averaging f ∗We (see Ta-
ble 3) we obtain

f ∗We =
(1− f ∗We)

1/2

t∗RC

∫ 0

1

1
WeR∗

[
2
3
(
1− f We∗

)( 1
R∗3 −1

)]−1/2
dR∗

=
−π√

6We t∗RC
.

(22)

2.2.5 Neo-Hookean elasticity

Approaching bubble closure, R∗
0 → 0, the neo-Hookean stress inte-

gral converges to a constant. Therefore, the modification function
and collapse time modification are equivalent for a highly inertial
collapse, f ∗NH = f ∗NH = −5/2Ca. Substituting the neo-Hookean
expression for f ∗NH into equation (16) results in the modified col-
lapse time consistent with the result in Yang et al. 43 , i.e.,

t∗c = t∗RC

(
1+

5
2Ca

)−1/2
.

However, for finite R∗
0 and Ca of O(1), the term that is linear in

R∗
0 can no longer be assumed to be small. For LIC, R∗

0 ∼ 0.1−0.25
and for the majority of the collapse phase, R∗ > R∗

0, thus we may
neglect the quartic term in R∗

0 in table 2 and f ∗NH ≈ (4R∗
0/R∗ −

5)/2Ca. Accounting for the finite equilibrium bubble radius, the
time-averaged f ∗ is

f ∗NH =
1

t∗RC

∫ 0

1

1
2Ca

[
4

R∗
0

R∗ −5
][

2
3

(
1

R∗3 −1
)]−1/2

dR∗

=
1

Ca

(√
2
3

R∗
0π

t∗RC
− 5

2

)
.

(23)

2.2.6 Viscous Newtonian fluid

Unlike the elastic case, the mean value of the modification func-
tion for a viscous Newtonian fluid does not converge. For a void
to reach closure in a viscous fluid, the strain rate and, therefore,

the viscous dissipation becomes infinite. Similar to the approxi-
mation in section 2.2.2, a proportionality coefficient for f ∗v is to
account for an intractable non-zero minimum radius when evalu-
ating f ∗, i.e.,

f ∗v =
4
(

1− f ∗v
)1/2

Re t∗RC

∫ R∗
min

1
− 1

R∗ dR∗ ≈
−4C

(
1− f ∗v

)1/2

t∗RC Re
. (24)

Here, C = C (Re) to obtain accurate results at smaller Reynolds
numbers which are experimentally relevant. Solving (24) for f ∗v
yields

f ∗v =
4C

2C +
√

Re2 t∗2
RC +4C 2

. (25)

C is solved for by balancing the liquid potential (8) and kinetic
(9) energies with the viscous dissipation, i.e.,

E∗
v =

16π

Re

∫ t∗

0
R∗Ṙ∗2dt∗. (26)

The bubble wall velocity and exact collapse time are then

Ṙ∗ =−
[

2
3

(
1

R∗3 −1
)
− 8

ReR∗3

∫ R∗

1
R∗Ṙ∗ dR∗

]1/2

, (27)

t∗c =−
∫ 0

1

[
2
3

(
1

R∗3 −1
)
− 8

ReR∗3

∫ R∗

1
R∗Ṙ∗ dR∗

]−1/2

dR∗, (28)

respectively. Substituting Eqs. (15), (16), and (25) into (28), the
nested integral on the right hand side is evaluated to obtain an
implicit relationship for C (Re),

t∗RC

1− 4C

2C +
√

Re2t∗2
RC +4C 2

−1/2

=

−
√

3
2

∫ 0

1

(
1

R∗3 − 4
√

6
ReΓ [5/3] R∗3

(
1− 4C

2C +
√

Re2t∗2
RC +4C 2

)1/2

[√
π Γ

[
7
6

]
−2

√
R∗ Γ

[
5
3

]
2F1

(
−1

2
,

1
6

;
7
6

;R∗3
)]

−1

)−1/2

dR∗,

(29)
where 2F1(·) is an ordinary hypergeometric function. The right-
hand side can be numerically integrated to find the value of C

for a given Re. For a fast and simple calculation, we approximate
the implicit function with a perturbation series where the small
parameter is 1/Re such that C (Re)≈ C0 +C1/Re+C2/Re2. Con-
stants C0, C1, and C2 approximate the implicit function in equa-
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tion (29) and are found by numerically integrating and iterat-
ing for three separate Reynolds numbers. The Reynolds numbers
used for this fitting are 18, 25 and 500. Below a Reynolds number
of 18, the numerical integration produces imaginary solutions.
The following values approximate equation (29): C0 = 0.46379,
C1 = 0.56391, and C2 = 5.74916.

2.2.7 Kelvin–Voigt viscoelasticity

The Kelvin–Voigt stress integral average is the sum of the viscous
and elastic contributions, i.e.,

f ∗KV = f ∗v + f ∗NH =
4C

2C +
√

Re2t∗2
RC +4C 2

+
1

Ca

(√
2
3

R∗
0π

tRC
− 5

2

)
.

(30)

2.2.8 Maxwell viscoelasticity

The stress integral for the Maxwell model has no closed-form re-
lationship. We approximate the right-hand side of the stress inte-
gral ODE in Table 2 to be f ∗v and obtain the approximate relation-
ship for the stress integral

S∗m = f ∗m ≈ f ∗v −
(

f ∗v − f ∗m,o

)
exp
[
− t∗

De

]
, (31)

where f ∗m,o is the unrelaxed stress in the surrounding material at
the maximum radius due to the expansion. For De ≪ 1, f ∗m,o ≈ 0;
otherwise, the initial stress can alter the subsequent bubble dy-
namics. The approximation of f ∗m,o is described in section 2.2.10.
Evaluating the time-average integral yields

f ∗m = f ∗v +
De
t∗c

((
f ∗v − f ∗m,o

)
exp
[
− t∗c

De

]
− f ∗v + f ∗m,o

)
, (32)

where f ∗m is obtained by substituting equation (16) into the pre-
vious expression. However, the implicit relationship has no ana-
lytical solution for f ∗m. In equation (32), t∗c is the actual collapse
time that depends on f ∗m. For simplicity, we approximate the re-
maining collapse time dependence, t∗c , by the Rayleigh collapse
time,

f ∗m = f ∗v +
De
t∗RC

((
f ∗v − f ∗m,o

)
exp
[
−

t∗RC
De

]
− f ∗v + f ∗m,o

)
. (33)

2.2.9 Standard linear solid using neo-Hookean elasticity

We consider a material model, the modified standard linear solid
or the Zener model31,45, comprising a Maxwell element parallel
to a neo-Hookean elastic element to be able to describe more com-
plicated finite-deformation viscoelastic material behavior. Since
the deviatoric Cauchy stress tensor is a sum of contributions, the
stress integral and its time derivative are S∗SLS = S∗m + S∗NH and
Ṡ∗SLS = Ṡ∗m + Ṡ∗NH, respectively. Similarly, the collapse time modifi-
cation function is the sum f ∗SLS = f ∗m + f ∗NH.

2.2.10 Initial stress due to unrelaxed Maxwell element

The energy balance approach is used to approximate the initial,
unrelaxed Maxwell stress at the maximum bubble radius. We
approximate the growth process as the inverse of the collapse;
therefore, the modification functions f ∗ switch sign. Additionally,

for bubble growth, it is assumed that the fluid is initially stress-
free, f ∗m,o = 0. Therefore, by using the negative value of f ∗v, the
growth time, and f ∗m,o = 0, we approximate the initial Maxwell
stress using equation (31).

To find the growth time, we consider the bubble to be nucleated
in a stress-free material at the equilibrium radius with a positive
bubble wall velocity such that the correct maximum stretch ratio
Rmax/R0 is reached. The non-dimensional energy balance is

4
3

π

(
1− f ∗g

)
(R∗3

0 −R∗3)+2π

(
R∗3

0 Ṙ∗2
i −R∗3Ṙ∗2

)
= 0, (34)

where Ṙ∗
i is the unknown initial bubble wall velocity and f ∗g the

average of the Rayleigh–Plesset modification function during the
growth phase. The initial bubble wall velocity is obtained by set-
ting the non-dimensional current bubble radius and bubble wall
velocity to 1 and 0, respectively. Solving for the initial bubble wall
velocity yields:

Ṙ∗
i =

√√√√2
3

(
1− f ∗g

)( 1
R∗3

0
−1

)
. (35)

The current bubble wall velocity is obtained by substituting equa-
tion (35) into equation (34) and taking the positive root for bub-
ble growth:

Ṙ∗ =

√
2
3

(
1− f ∗g

)( 1
R∗3 −1

)
. (36)

The growth time is then

t∗g =
∫ 1

R∗
0

[
2
3

(
1− f ∗g

)( 1
R∗3 −1

)]−1/2
dR∗

=

√
6/5

Γ[4/3]
√

1− f ∗g

(√
π Γ

[
11
6

]
−R∗5/2

0 Γ

[
4
3

]
2F1

(
1
2
,

5
6

;
11
6

;R∗3
0

))
.

(37)
If f ∗g > 1, then the growth time approximation has an imagi-
nary, unphysical contribution due to averaging the forcing dur-
ing the growth phase. The two physical effects that can produce
these imaginary solutions are elasticity and surface tension. Neo-
Hookean elasticity and surface tension produce unphysical results
for Ca < 5/2 (G > 50kPa) and We of the same order as Ca, respec-
tively. The shear moduli observed in this work were all below
25 kPa. For We of O(1), the maximum radius would be much
smaller than is experimentally relevant in this work. Small Debo-
rah numbers (< 0.1) result in the initial stress prediction deviat-
ing from the iterative method result described in Section 3 with
relative errors above 50% (data not shown). However, the accu-
racy of the initial stress in this regime is inconsequential, as the
corresponding collapse time modification factor is very small. For
the collapse time prediction, parameter values yielding a f ∗ > 1
would lead to weak oscillations not inertial bubble collapse.

2.3 Experimental methods

The laser microcavitation experiments follow the general LIC pro-
cedure of Estrada et al. 19 with two main advancements of (i)
shadowgraph and ghost imaging and (ii) incident beam shap-
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and ghost image triggering
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Focusing
objective

Objective

wave speed measurement
from ghost imaging

D = 154 µm 

dt = 100 ns 
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first frame after collapse
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beam
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Fig. 2 The experimental setup to generate, record, and profile single laser-induced microcavitation (LIC) bubble events in soft materials. The setup uses
a combination of a class-4, frequency-doubled Q-switched 532 nm Nd:YAG pulsed laser, a high-speed imaging camera, and a spatial light modulator.
The time of the first bubble collapse is estimated according to the shock wave, which was visualized by shadowgraph and ghost imaging techniques.

ing46 (see Figure 2). These are described in detail in A and sum-
marized here.

Single LIC bubble events are generated in soft hydrogels us-
ing a pulsed, frequency-doubled (532 nm), Q-switched Nd:YAG
laser. The pulse energy is user-defined and was on the order of
1−10 mJ for the experiments. A diffraction-limited focusing objec-
tive condenses the laser pulse into a beam waist to approximately
4 µm in diameter. A second objective is oriented orthogonal to
the imaging plane for the purpose of verifying bubble spheric-
ity. A spatial light modulator is used to tune higher-order beam
asymmetry to create spherical bubble events. We record the mi-
crocavitation event at 1 million frames per second (Mfps) using a
Shimadzu HPV-X2 (Tokyo, Japan) ultra-high-speed imaging cam-
era. A backlight laser strobe fires synchronously with the camera
and is sent to the bubble event as parallel light. This light en-
ables shadowgraph imaging, a mode related to Schlieren imaging
that permits the visualization and measurement of emitted shock-
waves. We strobe the shadowgraph backlight twice per frame, im-
proving our estimate of the collapse time using the shock speed
(found by locating two shocks on one frame) and the minimum
radius estimate.

Water-glycerol solutions were prepared by combining glycerol
(G33-1, Thermo Fisher) with DI water at a volumetric ratio of
60% glycerol to 40% DI water. The solution was subsequently
placed on a magnetic stirrer (Isotemp SP88854200, Thermo
Fisher) and stirred continuously at room temperature for a dura-
tion of 30 minutes. Water-PEG mixture samples were produced by
mixing Polyethylene glycol 50% (w/v) of molecular weight 8,000
(PEG 8000; Avantor 101443-878) with DI water in a proportion

of 80% PEG by volume. The blended mixtures were poured into
glass-bottomed, 35 mm diameter Petri dishes up to roughly 2 mm
of depth. These prepared samples retained a liquid state with
no signs of heterogeneity. The low-frequency shear moduli of
the water-PEG mixture samples were measured using a TA Instru-
ment ARES-G2 rotational rheometer (New Castle, DE) equipped
with a 40 mm diameter stainless steel 2◦-angle cone plate fixture
and a flat base. Dynamic loading was applied at a frequency of
1 rad/s with the maximum strain amplitude of 0.04 rad.

Polyacrylamide (PAAm) gels for characterization purposes
were prepared at concentrations of 5%/0.03% and 10%/0.06%
acrylamide/bisacrylamide (v/v) according to previously devel-
oped protocols19,47. The PAAm gels were cast in square 5 mL
polystyrene spectrophotometer cuvettes and cured for 45 min
prior to characterization.

2.4 Parsimonious inverse characterization based on bubble
collapse time

Past studies using IMR have found that adjusting the laser energy
can modulate the maximum radius of the bubble, while the am-
plification factor of the initial bubble expansion, Λmax = Rmax/R0,
is weakly sensitive to laser energy48. Thus, we perform LIC ex-
periments at various laser energy levels on a material and tune
the parameters appearing in equation (5). Our experiments tra-
verse the {Rmax,Λmax} space for a constant set of dimensional
viscoelastic parameters and collect t∗c (Rmax,Λmax). As illustrated
in Figure 3 for a Kelvin–Voigt model example, t∗c reflects the com-
bined effect of the collapse modification functions reviewed in
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Fig. 3 Combined effect of viscoelasticity, bubble content pressure, weak
compressibility, and surface tension on the bubble collapse time in a
Kelvin–Voigt material with {G = 10kPa,µ = 0.1Pa ·s} across typical range
of Rmax and Λmax in LIC experiments.

2.2, which varies with Rmax and Λmax.
We solve for the viscoelastic model parameters that minimize

the difference between the collapse times approximated by the
energy balance analysis, tApprox

c , and those that were experimen-
tally measured, tExpt

c . We refer to this inverse characterization
method as the parsimonious Inertial Microcavitation Rheometry
technique (pIMR).

Specifically, we use a cost function,

ψ = log10

1
n

n

∑
k=1


 tExpt

c

[
R(k)

max,Λ
(k)
max

]
tApprox
c

[
G,µ,τ1,R

(k)
max,Λ

(k)
max

]
2

−1


2
 ,
(38)

that quantifies the agreement between the collapse time mea-
sured experimentally and the approximated value for a set of
trial parameters {G,µ,τ1} according to the energy balance anal-
ysis using n number of experiments. The cost function can be
interpreted as the order of mean square relative error between
the measured and predicted collapse time. Using the fminsearch
function in MATLAB, which implements a Nelder–Mead direct
search process49,50, an optimal set of viscoelastic parameters is
then determined to minimize ψ.

To analyze the precision of the inverse characterization solu-
tion, we also introduce the normalized cost function for experi-
mental data, ψ̂ = ψ −ψ0, where ψ0 is the minimized cost func-
tion for a given type of viscoelastic model, corresponding to the
optimal solution found by the direct search algorithm. The nor-
malized cost ψ̂ is equal to zero at the optimal solution, whereas
the positive-valued ψ̂ elsewhere reflects how far the solution is
from being optimal.

Furthermore, we seek to encourage the parsimony of the
inversely-calibrated viscoelastic model type and minimize the
number of parameters used. This could be achieved, for exam-
ple, through a F-test-based criterion that discourages the addi-
tion of a model parameter that does not lead to a large enough
decrement of ψ0. In practice, a user could decide to penalize a
model multiplicatively based on the added number of terms51–53

or use a least absolute shrinkage and selection operator (LASSO)
regression54. In the present work, we simply report cost function
decrement ∆ψ0 to reflect the parsimony of the constitutive model.

For the specific models we consider, we report the cost function
decrements

∆ψ0 =

{
min

[
ψ0,NH,ψ0,Nt

]
−ψ0,KV , Kelvin–Voigt

ψ0,KV −ψ0,SLS , SLS
(39)

where ψ0,NH, ψ0,Nt, ψ0,KV, ψ0,SLS are the minimized ψ corre-
sponding to the neo-Hookean, Newtonian, Kelvin–Voigt, and SLS
models, respectively. If a model type results in a decrement below
a threshold value of ∆ψ0, we can consider it to be over-fitting. In
our analysis presented below, a threshold value of 0.5 is consid-
ered for an illustrative purpose. A user may modify the choice
of threshold depending on the type of material characterized and
the relative amount of noise in the experiment data.

Parsimonious Inertial Microcavitation Rheometry Pro-
cedure

Data generation: Follow methods in section 2.3 to obtain
R(t) and tc for N experiments.
From dataset, Rmax, R0, calculate R∗

0 and then f ∗bc
given material properties: c, γ, ρ then

Calculate Mc and We from dataset of Rmax

Calculate f ∗wc and f ∗We

Provide initial guess for constitutive material properties,
µ0, G0, and τ1,0

For each constitutive model, calculate an initial loss, ψi

while ψ ̸= ψ0 do
Evaluate total f ∗ and calculate tApprox

c for each model
Compute updated loss, via (38)

Update parameters via Nelder-Mead step
(fminsearch in MATLAB)
end while
Compute both ∆ψ0 to determine model via (39)

*Optional
To verify model choice, compute RMSE values be-

tween RExpt and RSim for all models
using µ, G, andτ1 from pIMR
if refine material constitutive parameters further do

Traditional IMR fitting procedure via least squares
minimization on optimal model

from verification, see19

end if
Result: Estimate material model and associated proper-
ties, µ, G, and τ1

3 Consistency check of pIMR

To check the consistency of the pIMR procedure, we use it to re-
cover input viscoelastic models from synthetic experiments. Using
the bubble dynamics model and stress integral evaluation proce-
dure described in 2.1, we simulate R(t) corresponding to n = 36
pairs of Rmax ∈ [100,400] µm and Λmax ∈ [5,9]. The Rmax and Λmax

values are generated with the Latin hypercube sampling method
assuming a uniform distribution55. The simulated collapse time
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is then used to inversely calibrate viscoelastic models with pIMR.
The results are presented in Table 4.

If additional constitutive model parameters are rejected when
∆ψ0 < 0.5, for example, pIMR can correctly identify the type of
constitutive model used in the synthetic experiments. Compared
to the input values, the elastic and viscous shear moduli, G and
µ, are recovered to within an accuracy of 5%. This is well within
the confidence interval commonly reported for hydrogels char-
acterized by IMR19,20,37,41, confined and unconfined compres-
sion56–58, and indentation56. For the SLS model, the relaxation
time scale τ1 is recovered to within a factor of two of the input
value. This accuracy is acceptable since τ1 contributes to the vis-
coelastic stress through an exponential relaxation function.

In B, additional synthetic experiments with n < 36 and artifi-
cially perturbed collapse time data are considered. We find that
the accuracy of collapse time measurement in our LIC experiment
setup is sufficient to ensure the stable performance of pIMR. Al-
though it is theoretically possible to calibrate a constitutive model
with m parameters using data from n = m LIC experiments, this
makes the calibration results more susceptible to the inherent dis-
crepancy between the bubble dynamics model and the approxi-
mate collapse time model presented in Section 2.2. A larger sam-
ple size n is encouraged for the accurate calibration of viscoelastic
model type and parameters.

We also verified that the assumption of isothermal bubble con-
tent made in 2.2.2 has a negligible effect on the inverse calibra-
tion results. Using collapse time data from synthetic experiments
with isothermal bubble content, without heat and mass transfer,
pIMR recovered viscoelastic models matching those shown in Ta-
ble 4.

4 Inverse characterization of viscoelastic materials
The proposed pIMR procedure is applied to the inverse charac-
terization of viscoelastic materials from LIC experiment results.
The calibrated viscoelastic model parameters are summarized in
Table 5. The range of Rmax and Λmax spanned in the experiments
are shown in Figure 7 (b).

4.1 Characterization of viscous fluids

We characterized mixtures of water and glycerol, with a 60% v/v
glycerol concentration. The mixtures are expected to exhibit vis-
cous fluid behavior with negligible elasticity. A total of 11 LIC ex-
periments were considered, with Rmax ranging from 186.8µm to
345.7µm and Λmax ranging from 3.55 to 4.35. The inverse fitting of
the Newtonian model resulted in a viscosity of 0.012 Pa ·s, which is
consistent with previously reported values59. Fitting further with
the Kelvin–Voigt model resulted in a minimal cost function decre-
ment. Figure 4 (a) shows the approximated collapse time tApprox

c

for the calibrated model versus the measured collapse time tExpt
c

of each experiment. We observe that, on average, tExpt
c is slightly

larger than the predicted value for an inviscid material. This sug-
gests the dominance of material viscosity over elasticity during
the bubble collapse. Due to the low value of µ, the effect of the
material viscosity is not pronounced in Figure 4 (a). However, the
calibrated viscosity of the Newtonian model indeed corresponds

to a minimization of ψ and an improved agreement between tExpt
c

and tApprox
c .

Next, we characterized uncured mixtures of water and PEG
8000, with an 80% v/v PEG concentration. A total of 20 LIC
experiments were performed, with Rmax ranging from 103.7µm
to 342.9µm and Λmax ranging from 4.73 to 7.10. The inverse fit-
ting of the Kelvin–Voigt model converged to a Newtonian model
with minimal elasticity. Figure 4 (b) shows the approximated col-
lapse time tApprox

c for the calibrated model versus the measured
collapse time tExpt

c of each experiment. If the water-PEG mate-
rial were Newtonian, as in the case of the water-glycerol exper-
iments shown in Figure 4 (a), the predicted and experimentally
observed collapse times would fall along the dashed red line cor-
responding to an agreement between the measurements and pre-
dictions. However, the Newtonian pIMR model overpredicts the
collapse time for experimental collapse times less than 25µs, and
underpredicts for longer times. Therefore, we hypothesize that
the fluid is exhibiting non-Newtonian behavior in the high-strain
rate regime.

Using the IMR technique, a Newtonian model with µ =

0.151Pa · s was found to minimize the offset between the nor-
malized bubble history {t∗,R∗(t∗)} recorded experimentally and
simulated by the bubble dynamics model, up to the third oscilla-
tion peak. Figure 5 (a) shows R(t) for a typical experiment with
the simulated bubble dynamics and the inversely characterized
constitutive model parameters. As we expect, the optimal param-
eters of a Newtonian model calculated via pIMR produce dynam-
ics that closely match the bubble collapse time, with an error of
0.29 µs (relative error: 0.94%). The IMR-calibrated model repro-
duced the post-collapse bubble dynamics more accurately than
pIMR but failed to capture the correct collapse time, as shown
in Figure 5 (a).

The least-squares fitting method employed by IMR obtains
agreement between simulation and experimental data of the en-
tire transient bubble dynamics. As a result, individual time
events, such as the primary bubble collapse time, can be inac-
curate. Thus, to accurately reproduce the post-collapse dynamics
of non-Newtonian fluids, shear-dependent viscosity models, e.g.,
Carreau model, are needed for pIMR. While this behavior is not
the focus of this work, it does warrant further investigation.

4.2 Characterization of polyacrylamide gels

We characterize PAAm gels with two different concentrations of
acrylamide/bisacrylamide. This class of material has been char-
acterized with IMR in past studies19,40 and exhibited viscoelastic
behaviors that were captured well by the Kelvin–Voigt model.

A total of 52 LIC experiments were performed on specimens
with an acrylamide/bisacrylamide concentration of 5/0.03%
(v/v), with Rmax = 218.0–401.3µm and Λmax = 6.49–8.46. The
history of R(t) for a representative experiment is shown in Fig-
ure 5 (b) with the simulated bubble dynamics of the calibrated
models. The bubble dynamics of the pIMR neo-Hookean and
Kelvin–Voigt solutions matched the collapse time within 0.087 µs
(relative error: 0.26%) and 0.063 µs (relative error: 0.19%), re-
spectively. The IMR-calibrated Kelvin–Voigt model overestimates

10 | 1–18Journal Name, [year], [vol.],

Page 10 of 19Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 4
:0

7:
46

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5SM00397K

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D5SM00397K


Table 4 Calibrated viscoelastic parameters, minimized cost function, and cost function decrement from synthetic experiments. (Numerical values below
10−5 are reported as ∼ 0.)

Material Model G (kPa) µ (Pa · s) τ1 (µs) ψ0 ∆ψ0
Synthetic NH, NH 10.44 – – -6.09 –

G = 10kPa Newtonian – ∼ 0 – -1.47 –
KV 10.44 ∼ 0 – -6.09 0.00

Synthetic Newtonian, NH ∼ 0 – – -1.83 –
µ = 0.1Pa · s Newtonian – 0.096 – -4.85 –

KV ∼ 0 0.096 – -4.85 0.00

Synthetic KV, NH 5.07 – – -2.79 –
G = 10kPa, µ = 0.1Pa · s Newtonian – ∼ 0 – -1.94 –

KV 10.11 0.095 – -5.50 2.71
SLS 10.38 0.116 0.506 -5.78 0.28

Synthetic SLS, NH 6.56 – – -3.41 –
G = 10kPa, µ = 0.1Pa · s, Newtonian – ∼ 0 – -1.80 –

τ = 1µs KV 9.17 0.052 – -5.16 1.75
SLS 10.08 0.096 1.90 -5.97 0.81

Table 5 Inversely characterized viscoelastic parameters from LIC experiments.

Material Technique Model G (kPa) µ (Pa · s) τ1 (µs) ψ0 ∆ψ0
Water-glycerol pIMR (n = 11) Newtonian – 0.012 – -2.94 –

pIMR (n = 11) KV 4.07 0.110 – -3.03 0.09
IMR Newtonian – 0.066 – – –
Capillary viscometer 59 Newtonian – 0.010 – – –

Water-PEG pIMR (n = 20) Newtonian – 0.223 – -1.72 –
pIMR (n = 20) KV ∼ 0 0.223 – -1.72 0.00
IMR Newtonian – 0.151 – – –
Shear-plate rheometry Newtonian – 0.122 ±0.005 – – –

PAAm, pIMR (n = 52) NH 3.11 – – -3.19 –
5/0.03% pIMR (n = 52) KV 6.52 0.109 – -3.28 0.09

pIMR (n = 52) SLS 18.42 0.731 6.24 -3.34 0.06
IMR KV 5.01 0.145 – – –
Static compression 19 NH 0.461±0.004 – – – –

PAAm, pIMR (n = 39) NH 10.11 – – -3.18 –
10/0.06% pIMR (n = 39) KV 14.49 0.130 – -3.29 0.11

pIMR (n = 39) SLS 21.31 0.538 6.03 -3.30 0.01
IMR KV 12.02 0.115 – – –
Static compression 19 NH 2.97±0.06 – – – –

the collapse time by 0.84 µs (relative error: 2.5%). If we were
to reject a constitutive model when ∆ψ0 < 0.5, for example, the
calculated ∆ψ0 suggests that the neo-Hookean model suffices to
describe the scaling of bubble collapse time. However, the Kelvin–
Voigt model clearly reproduces the post-collapse bubble dynamics
more accurately in Figure 5 (b).

A total of 39 LIC experiments were performed on gels with an
acrylamide/bisacrylamide concentration of 10/0.06% (v/v), with
Rmax = 215.2–416.3µm and Λmax = 5.67–6.76. Again, cost function
decrement ∆ψ0 suggests that the collapse time scaling is described
well by the neo-Hookean model. Consistent with the IMR calibra-
tion results, pIMR suggests that the elastic modulus increases with
the concentration of acrylamide/bisacrylamide, while the viscos-
ity changes minimally between the two types of specimens.

5 Discussion

The inverse characterization results in Section 4 show pIMR es-
timating finite deformation viscoelastic model parameters across
a batch of experiments with different Rmax and Λmax. For the
52-sample batch of PAAm gel (5/0.03% (v/v) acryl/bis) exper-
iments, the optimal model type and parameters for all samples

were determined within 1 second of computation on a work-
station (Intel Core i7 14700K). Using the IMR bubble dynamics
model, approximately 10 seconds of computational time are re-
quired to simulate the bubble dynamics up to the fourth peak of
oscillation for each set of input parameters describing the mate-
rial viscoelasticity and the bubble’s initial and equilibrium condi-
tions in each experiment. The computational cost is amplified as
the simulation is repeated for combinations of input parameters.
In the context of an end-case-usage to characterize soft tissues
on-the-fly during medical procedures, the reduction in compu-
tational cost from pIMR corresponds to a decreased surgical time
and an increased rate of patients treated. While IMR can be accel-
erated through alternative approaches such as Bayesian optimal
design60,61, such a procedure still necessitates forward simula-
tions of bubble dynamics. Inverse characterization considering
the full bubble dynamics is unable to pare down the parameter
space as rapidly as the collapse-time-based, analytical model pre-
sented here for pIMR.

The estimation of viscoelastic properties from collapse time
also reduces the requirements that IMR previously placed on the
optical turbidity of the characterized material. With a decreased
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Fig. 4 Comparison of measured vs. predicted collapse time for (a) the 60% (v/v) concentration water-glycerol mixture characterized, with n = 11
samples and (b) the 80% (v/v) concentration water-PEG mixture characterized, with n = 20 samples. The collapse time during LIC is larger than the
predicted value for an inviscid material, suggesting the dominance of viscosity over elasticity during the collapse process.
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Fig. 5 Bubble dynamics corresponding to representative experiment
data (hollow squares) and the inverse characterization solutions: (a)
water-PEG 8000 mixture, (b) PAAm gel with 5/0.03% (v/v) acry-
lamide/bisacrylamide concentration. (c) Decomposition of collapse mod-
ification function f ∗ for the representative experiments considered in (a)
and (b). Relative to the weak compressibility ( f ∗wc, teal) and the surface
tension ( f ∗We, pink), the bubble pressure ( f ∗bc, orange) and the viscoelastic
stress ( f ∗S, yellow) have stronger modifying effects on the bubble collapse
time.

frame rate and an increased exposure time per frame, bright-field
videography can be used to measure the maximum and equilib-
rium radii of the bubble in an optically turbid material. Since
the bubble collapse coincides with the emission of shock waves,
its occurrence can be captured with methods other than the opti-
cal strategy introduced in Section 2.3. Integrated circuit piezo-
electric transducers are commonly used in shock tube35,62,63

and Kolsky bar12,64 experiments to detect pressure spikes during
high strain rate deformation of materials. Past studies of laser-
and ultrasound-induced cavitation have used hydrophones to ac-
quire acoustic signals and identify the occurrences of shockwave-
emitting collapse events28,65. Using custom-built histotripsy ar-
rays with receive capable elements, Sukovich et al. have demon-
strated the experimental quantification of the time lapse between
the nucleation and the first collapse of ultrasound-induced cavita-
tion in ex-vivo porcine and bovine tissues10,11,66. These acoustic
techniques can be feasibly integrated into a LIC experiment setup
for the inverse characterization of optically turbid materials.

The inverse characterization of PAAm gels suggest that, at the
length scale of LIC experiments, the material elasticity has a
stronger contribution to the bubble collapse time than the ma-
terial viscosity. This agrees with past studies concluding that the
first collapse of LIC in hydrogels are dominated by inertial and
elastic effects20,43. In Figure 6 (a) and (b), the approximated
collapse times tApprox

c for calibrated models are plotted against the
measured collapse time tExpt

c of each experiments in the two types
of PAAm gels. For each LIC experiment, tExpt

c is shorter than what
is predicted for an inviscid fluid, indicating that the ground-state
elasticity is more dominant than the material viscosity during the
bubble collapse. In Figure 5 (c), the collapse modification func-
tion f ∗ in each representative experiment is decomposed into the
contributing parts listed in Table 3. For both the water-PEG mix-
ture and PAAm gel cases, the decomposed values indicate that the
bubble pressure and the viscoelastic stress are the main factors
modifying the bubble collapse time. The effects of the material
compressibility and the surface tension are weaker in compari-
son. As shown in Table 5, the neo-Hookean model sufficiently
decreases ψ0 and seems to be the optimal choice of constitutive
model for the PAAm gel. However, a close inspection of Fig-
ure 6 (a) and (b) reveals that the calibrated neo-Hookean model
underestimated the collapse time in experiments with small Rmax
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Fig. 6 Characterization of PAAm gels with pIMR. Comparison of measured vs. predicted collapse time for (a) 5/0.03% (v/v) acrylamide/bisacrylamide
and (b) 10/0.06% (v/v) acrylamide/bisacrylamide for inviscid, neo-Hookean, Kelvin–Voigt, and Standard Linear Solid models. Contours of normalized
cost function ψ̂ corresponding to Kelvin–Voigt parameters {G,µ} for (c) 5/0.03% (v/v) acrylamide/bisacrylamide and (b) 10/0.06% (v/v) acry-
lamide/bisacrylamide experiments. The opposing effects of elastic modulus G and viscous modulus µ on the bubble collapse time are reflected in the
slope of the ψ̂ space.

and overestimated the collapse time in experiments with large
Rmax. The addition of material viscosity improved the agreement
between the measured and predicted collapse time values since
f ∗v increases in magnitude with smaller Re, which is inversely
proportional to Rmax when µ is constant, as discussed in Sec-
tion 2.2.6.

The LIC experiments of PAAm gels surveyed ranges of Rmax with
a ratio of ∼ 2 between the upper and lower bounds. The Kelvin–
Voigt parameters, G and µ, calibrated with pIMR have relative
errors within 30% of the IMR result. However, the normalized
cost function spaces shown in Figure 6 (c) and (d) reflect a lower
precision in the calibration of µ compared to G. For example, in
the case of the 10/0.06% (v/v) acrylamide/bisacrylamide exper-
iments, the region of ψ̂ < 0.1 spans 11.1kPa ≤ G ≤ 18.2kPa and
0.03Pa · s ≤ µ ≤ 0.22Pa · s, corresponding to upper-to-lower bound
ratios of 1.6 and 7.3, respectively. The precision of the calibrated
viscosity can be improved by surveying as broad of a range of bub-
ble sizes as is experimentally feasible. Because the viscous forcing
function f ∗v depends on Re, which is linearly proportional to Rmax,
maximizing the experimental range of Rmax would distinguish this
effect of material viscosity on the bubble collapse time. In our cur-
rent setup, practical experimental considerations bound the max-
imum (in this case, due to the finite cuvette size) and minimum
values (e.g., due to the camera frame rate) of Rmax. The range
of Rmax for LIC experiments could, in general, be broadened with
longer-focal-length objectives permitting the generation of larger
bubbles in larger samples, or sub-nanosecond laser pulses to pro-
duce more reliable small bubble events. In the case of more com-
plicated design spaces than Rmax alone (such as a variety of ex-
ternal pressures or initial stretch ratios), the pIMR method could

be performed in tandem with a recently developed Bayesian opti-
mized experimental design procedure by Chu et al. 60,61 currently
only employing bubble dynamics forward simulations. In this sce-
nario, the pIMR approach further stands to speed up characteri-
zation by using the analytical model for informing the next best
experiment to run for maximum information gain.

In addition to the initial collapse time considered in the present
work, other measurable parameters or constitutive models with
additional effects (e.g., non-Newtonian behavior) may be har-
nessed for a more effective parsimonious characterization of vis-
coelastic models. For example, Figure 5 (b) shows that the neo-
Hookean and Kelvin–Voigt solutions from pIMR lead to bubble
dynamics that diverge more discernibly from each other after the
initial collapse. Similarly, for the case of a water-PEG mixture,
shown in Figure 5 (a), the difference between the Newtonian
fluid models calibrated via IMR and pIMR becomes clearer in the
post-collapse bubble dynamics. Comparing the diverging solu-
tions between pIMR and IMR past the primary bubble collapse, a
hybridized approach containing the speed of pIMR and accuracy
of IMR is warranted. In such a hybrid setting, pIMR and IMR are
complementary to each other. That is, pIMR is used to identify
the constitutive model and estimates of the associated material
parameters, which may be further refined using an IMR inverse
characterization within a pared-down range of constitutive model
parameters.

6 Conclusions
We present the pIMR technique, a parsimonious enhancement of
the IMR technique that rapidly characterizes the local viscoelas-
tic properties of soft materials from laser-induced cavitation ex-
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periments. This new procedure is possible due to experimental
advancements in estimating the collapse time of a laser-induced
cavity, coupled with a theoretical energy balance analysis. We
make an ansatz to a modified potential energy through averaging
effects within the Keller–Miksis equation. This ansatz allows the
collapse time approximation to include viscoelastic parameters,
surface tension, bubble pressure, and finite wave speed. In our
approach, we do not introduce empirical fitting parameters in the
energy balance analysis to improve its agreement with the bubble
dynamics model. These approximate models for the collapse time
were shown to perform well in predicting the collapse time from
simulations of the Keller–Miksis equation over a parameter space
that is experimentally relevant to inertial microcavitation within
soft materials.

The proposed procedure successfully pares down the space
upon which we seek the global optima of viscoelastic model pa-
rameters. Using a cost function ψ that quantifies the agreement
between the measured and predicted collapse time, our proce-
dure identifies the simplest type of constitutive model and the
optimal values of model parameters. Experimental characteri-
zation of viscous fluid and hydrogel specimens resulted in opti-
mized Newtonian and Kelvin–Voigt parameters, respectively, that
closely matched the results of the IMR procedure while reduc-
ing the computational cost of post-processing from more than an
hour to a few seconds.

Our LIC experiments in viscous fluids and soft hydrogels re-
vealed that the dominating mechanisms during the first collapse
of the bubble do not necessarily dominate during the ensuing
bubble dynamics. For the case of PAAm gels, a neo-Hookean hy-
perelastic model suffices to reproduce the bubble collapse, while
the post-collapse kinematics is strongly influenced by the mate-
rial viscosity and described better by a Kelvin–Voigt model. We
envision that this issue can be addressed via an inverse charac-
terization procedure considering additional observable parame-
ters in the post-collapse bubble dynamics, additional physics in
the models (e.g., non-Newtonian behavior), or through coupling
pIMR with IMR.

While the present work only considers viscoelastic models with
three or fewer parameters in part due to potential non-uniqueness
of solutions involving collapse time alone, the procedure of find-
ing the corresponding modification functions can be straightfor-
wardly extended to viscoelastic models with other non-linear elas-
tic and non-Newtonian fluid behaviors. For example, by record-
ing data over a range of stretch ratios as in48 and incorporating
higher-order elastic spring elements20, the non-linear elastic re-
sponse can be decoupled from the shear modulus. Quantifica-
tion of higher-order non-linear behavior is a potentially impact-
ful future use case of this method, as an apparent assessment
need in histotripsy is the quantification of the degree of therapy
completion via acoustic emissions10,11. Haskell et al. 11 found
an increase in the time from bubble initiation to collapse during
the course of therapy, which is qualitatively due to conversion
of elastic biomaterial to an ablated viscous liquid. The method
presented herein could quantitatively describe the material me-
chanics during the course of the therapy, and hence, the time to
therapy completion. We thus anticipate pIMR to be a useful tool

in establishing mechanics-based therapy guidelines for different
prospective tissue applications.
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A Experimental methods
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Fig. 7 Distribution of {Rmax,Λmax} in (a) synthetic experiments and (b)
LIC experiments. For synthetic experiments, all data points are consid-
ered in the n = 36 case, the red square and bubble diamond points are
considered in the n = 9 case, and only the blue diamond points are con-
sidered in the n = 3 case.

Our setup generates, records, and profiles pulses of single
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Table 6 Non-dimensional parameters with associated theoretically and experimentally valid regimes.
1The elastic effect due to a neo-Hookean element does not obey the same linearization rules as the other models. This behavior is because the leading
order term in the modification function, f ∗, is constant. As shown in 43, for a void where R∗

0 → 0, this is the exact modification ( f ∗) to the collapse
time.
2There has never been a large improvement from including relaxation in the constitutive models when calibrating using IMR. De is of O(1) to observe
the effect of relaxation.
3This is true for Re> 70, if the Reynolds number is smaller, relative errors > 1% are observed for De between 0.03 and 13 (for Re = 15). The largest
relative error when Re = 15 and De = 1 and is 5.7%.

Parameters Theory-valid range Max theory-valid value of f ∗ Experimental range

Re [15, ∞] maxRe

(∣∣∣ f ∗v ∣∣∣)= 0.14 [15, 4000]
1Ca [5, ∞] maxCa

(∣∣∣ f ∗NH

∣∣∣)= 0.5 [5, 500]

De 3[0, ∞] maxDe

(∣∣∣ f ∗max

∣∣∣)= 0.14 2N/A

Mc [0, 0.35] maxMc

(∣∣∣ f ∗wc

∣∣∣)= 0.32 [0.0064, 0.0068]

We [13, ∞] maxWe

(∣∣∣ f ∗We

∣∣∣)= 0.11 [100, 350]

R∗
0 [0, 0.575] maxR∗

0

(∣∣∣ f ∗bc

∣∣∣)= 0.213 [0.1, 0.25]

LIC bubble events in soft materials using a combination of a
pulsed, Q-switched, user-adjustable 1–25 mJ, frequency-doubled
532 nm Nd:YAG laser (Continuum Minilite II, San Jose, CA) and a
high-speed imaging camera (HPV-X2; Shimadzu, Kyoto, Japan).
The setup is triggered using an 8-channel pulse/delay generator
(Model 577; Berkeley Nucleonics, San Rafael, CA) according to a
customized pre-programmed pulse sequence. The pulse sequence
was validated using an oscilloscope (P2025; Berkely Nucleonics).
Sequential triggering signals fire two single pulses: the first trig-
gers the laser’s flash lamp, and the second fires the Q-switch. The
last two triggering signals are sent to a beam profiler (BC106N-
VIS; Thorlabs) and the high-speed camera. The backside of the
sample is illuminated with the aid of a 640 nm monochromatic
ultra-high-speed strobed diode laser (Cavilux Smart UHS; Cavi-
tar, Tampere, Finland). The high-speed camera sync-out signal
triggers the illumination laser. The laser beam/pulse was aligned
to the back apparatus of a 10X/0.25 High-Power MicroSpot Fo-
cusing Objective (LMH-10X-532; Thorlabs, Newton, NJ) using
three reflective broadband dielectric mirrors (BB1-E02; Thorlabs,
Newton, NJ), three short-pass dichroic mirrors, a beam-sampler,
and a spatial light modulator (SLM) (Holoeye, Berlin, Germany).
The first dichroic mirror (DMSP605; Thorlabs, Newton, NJ) is
used for the beam alignment in conjunction with a continuous
exposure Collimated Laser Diode Module (CPS635R; Thorlabs,
Newton, NJ). A 2X fixed magnification beam-expander (GBE02-
A; Thorlabs, Newton, NJ) helps distribute the collimated beam on
a larger area and minimizes any potential damage to the SLM and
focusing objective lens at the back aperture. The second high-
pass dichroic mirror (DMSP550; Thorlabs, Newton, NJ), which
has a cutoff wavelength of 550 nm, was used to filter infrared
wavelengths and discard them into a beam-block (LB2; Thorlabs,
Newton, NJ). The visible beam is then reflected onto a spatial
light modulator, allowing for higher control over the last pulse
shape and energy. Last, the beam is split before it reaches the fo-
cusing objective using a beam sampler lens (BSF10-A; Thorlabs,
Newton, NJ). Approximately 0.5% of the split beam is reflected
towards a beam profiler (BC106N-VIS; Thorlabs, Newton, NJ) to
assess the pulse quality and measure its energy. The remaining

99.5% of the beam continues to the focusing objective through the
third dichroic mirror (DMSP550; Thorlabs, Newton, NJ), which
also has a cutoff wavelength of 550 nm, allowing the cavitation
laser (532 nm) to pass while reflecting the illumination laser light
(640 nm). The focusing objective focuses the beam at the micro-
cavitation imaging plane.

The microcavitation event is performed at 1 million frames
per second (Mfps) using a Shimadzu HPV-X2 (Tokyo, Japan)
high-speed imaging camera, illuminated by CAVILUX Smart UHS
(Tampere, Finland) laser, and through both, the cavitation objec-
tive and an Olympus Plan 10X-0.25 Achromat imaging objective
(RMS10X; Thorlabs, Newton, NJ). The data is analyzed using our
in-house Matlab image processing code. To measure the wave
speed in the medium, we deployed two imaging techniques si-
multaneously: laser shadowgraph67 and ghost imaging68. Shad-
owgraph imaging is performed by manipulating the backlighting
path to capture density variation due to the compressive shock-
wave. The physical location of the pressure wave is then esti-
mated during the bubble’s cavitation and collapse. Ghost imag-
ing is achieved by triggering the strobed backlight a user-defined
number of times per camera exposure, usually 2 or 3 per frame.

B Additional consistency check of pIMR

In this section, we first present a brief summary of how the col-
lapse time models perform when compared to simulations, then
we show additional synthetic experiments to verify the consis-
tency of pIMR. We consider a Kelvin–Voigt material with G =

10kPa and µ = 0.1Pa · s.
We evaluate performance of the collapse time models by com-

puting a relative error between the predicted to the simulated
values. We simulate and compare the effects from each non-
dimensional parameter individually to determine ranges of the
parameters where the theory holds. As such, we numerically solve
Rayleigh’s equation with only one modification on the right hand
side, that is,

RR̈+
3
2

Ṙ2 =−1+ f ∗α ,

where α indexes effects from each non-dimensional parameter.
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Table 7 Calibrated viscoelastic parameters, minimized cost function, and cost function decrement from synthetic experiments with varying levels of
artificial errors. The input Kelvin–Voigt model parameters are {G = 10kPa,µ = 0.10Pa · s}.

Artificial Error n Model G (kPa) µ (Pa · s) τ1 (µs) ψ0 ∆ψ0
36 NH 5.07 – – -2.79 –

Newtonian – ∼ 0 – -1.94 –
KV 10.11 0.095 – -5.50 2.71
SLS 10.38 0.116 0.506 -5.78 0.28

0% 9 NH 4.65 – – -2.76 –
Newtonian – ∼ 0 – -1.99 –

KV 10.11 0.095 – -5.42 2.66
SLS 10.10 0.104 3.34×10−3 -5.62 0.20

3 NH 5.46 – – -2.97 –
Newtonian – ∼ 0 – -1.91 –

KV 9.29 0.063 – -5.06 2.09
SLS 10.15 0.107 1.57 -31.18 26.12

36 NH 4.97 – – -2.79 –
Newtonian – ∼ 0 – -1.95 –

KV 10.00 0.094 – -5.48 2.69
SLS 10.27 0.116 0.515 -5.75 0.27

+0.1% 9 NH 4.55 – – -2.76 –
Newtonian – ∼ 0 – -2.01 –

KV 10.00 0.095 – -5.39 2.71
SLS 10.34 0.118 0.603 -5.78 0.39

3 NH 5.36 – – -2.96 –
Newtonian – ∼ 0 – -1.92 –

KV 9.18 0.063 – -5.05 2.09
SLS 10.05 0.107 1.583 -31.78 26.73

36 NH 4.07 – – -2.79 –
Newtonian – ∼ 0 – -2.09 –

KV 9.02 0.094 – -5.27 2.48
SLS 9.34 0.116 0.596 -5.48 0.21

+1% 9 NH 3.65 – – -2.76 –
Newtonian – ∼ 0 – -2.15 –

KV 9.02 0.094 – -5.21 2.45
SLS 9.01 0.102 7.47×10−4 -5.35 0.14

3 NH 4.45 – – -2.97 –
Newtonian – ∼ 0 – -2.05 –

KV 8.18 0.062 – -4.97 2.00
SLS 9.12 0.109 1.686 -31.78 26.81

To quantify ranges for the parameters in which the theory is valid,
we set a threshold on the relative error in order to determine
these ranges. That is, if the relative error between the simulated
collapse time and the predicted collapse time is < 1%, then the
theory holds.

Table 6 shows the results of quantifying regions of validity in
the parameter space for the approximations.

As discussed in Section 3, when the synthetically generated
collapse time for n = 36 combinations of Rmax ∈ [100,400] µm
and Λmax ∈ [5,9] are considered, pIMR identifies the Kelvin–Voigt
model to be the optimal choice and recovers G and µ to within an
accuracy of 5%. To examine the effect of the sample size n, we al-
ternatively consider subsets with n = 9 and n = 3, as illustrated in
Figure 7 (a). The corresponding results from pIMR are shown in
Table 7. The n = 9 case results in Kelvin–Voigt parameters closely
matching the n = 36 case, with the cost function decrement ∆ψ0

decreasing from 2.66 to 0.20 when the constitutive model is ad-
vanced from Kelvin–Voigt to SLS. In contrast, the n = 3 case led to
calibrated Kelvin–Voigt parameters with relative errors of 7% and
37%, respectively for G and µ. The minimized cost function ψ0

decreases sharply from -5.06 to -31.18 when the relaxation time
scale τ1 is considered. This is due to the fact that exactly three

experiments are considered to calibrate the three-parameter SLS
model. Perhaps, a different subset of synthetic experiments with
n = 3 would have resulted in a more accurate calibration of the
viscoelastic model. However, such optimization of {Rmax,Λmax} is
not feasible for real LIC experiments. As a general guideline, a
large sample size of LIC experiments is beneficial for the perfor-
mance of pIMR.

In our LIC experiment, the measurement of collapse time has
a relative accuracy on the order of 0.1%. To examine the effect
of such measurement uncertainty on pIMR, we repeat the above
analysis with a relative error of 0.1% uniformly added to the col-
lapse time of each experiment. Overall, the accuracy of the cali-
brated model parameters suffered minimally from the artificial er-
ror. In fact, for the n= 36 and n= 9 cases, the artificially increased
collapse time led to a decreased G in the pIMR solution, matching
the input value better than in the earlier, error-free case. When
the artificial error is further increased to 1%, we observe that the
calibrated G is decreased by approximately 11% compared to the
error-free case, while the accuracy of µ shifted by less than 2%.
This suggests that pIMR performs stably when processing collapse
time data from our LIC experiments.
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Data availability

 The code for pIMR is available at: https://github.com/ 
InertialMicrocavitationRheometry/parsimonious_IMR.
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